ANGEWANDTE GEOWISSENSCHAFTEN

BERATENDE INGENIEURE PartGmbB

STEFFEN POTTHOFF

GABRIEL BRÜTSCH

Baugrunderkundung Gründungsberatung Altlastenerkundung Bodenmechanik Umweltgeologie Deponietechnik Hydrogeologie

Mitglied der

15.09.2025 Az 25 007.1

Angewandte Geowissenschaften Potthoff + Brütsch PartGmbB 72074 Tübingen – Nauklerstraße 37A

BPD Immobilienentwicklung GmbH Niederlassung Stuttgart Silcherstraße 1

70176 Stuttgart

GUTACHTEN

über eine Detailuntersuchung (DU)

für den Altstandort

an der Filderstraße 119

in Leinfelden-Echterdingen Musberg

IN	HALT	Seite
1.	Allgemeines und Aufgabenstellung	4
2.	Standortbeschreibung	
	2.1 Lage und Nutzung	5
	2.2 Geologische und Hydrogeologische Verhältnisse	
3.	Durchgeführte Untersuchungen	
	3.1 Ergebnisse früherer Untersuchungen	6
	3.2 Geländearbeit und Probenahme	8
	3.3 Pumptest zur Ermittlung hydraulischer Kenndaten	9
	3.4 Umfang der chemischen Untersuchungen	10
4.	Ergebnisse der Untersuchungen	12
	4.1 Schichtaufbau des Untergrunds	12
	4.2 Hydrogeologische Verhältnisse	14
	4.3 Ergebnisse des Pumptests in der Messstelle B 4	16
5.	Analysenergebnisse der Erkundungen	17
	5.1 Bodenluft	17
	5.2 Boden	17
	5.3 Grundwasser	20
6.	Bewertung der Analysenergebnisse	22
	6.1 Bewertungsgrundlagen	22
	6.2 Abfalltechnische Bewertung	23
	6.3 Bewertung Wirkungspfad Boden-Grundwasser	23
	6.4 Bewertung Wirkungspfad Boden-Mensch	24
7.	Zusammenfassung und Hinweise	24
8	Schlussbemerkungen	26

ANLAGEN

Übersichtslageplan, Maßstab 1: 25.000 Anlage 1.1: Anlage 1.2: Lageplan mit Aufschlusspunkten, Maßstab 1: 200 im Original, verkleinert Anlage 2.1: Schichtprofile der Bohrungen (B 1 - B 3) Schichtprofile der Bohrungen (B 4 - B 6) Anlage 2.2: Schematischer Schnitt mit Homogenbereichen (Baugrundmodell) Anlagen 3.1 + 3.2: Ergebnislageplan der PAK-Untersuchungen Anlage 4: Ergebnislageplan der Grundwasseruntersuchungen Anlage 5: Anlage 6: Fotodokumentation der Bohrungen Anlage 7: Prüfberichte der Agrolab Labor GmbH, Bruckberg Pegelausbauskizzen der Bohrungen (B 1 - B 3) Anlage 8.1: Pegelausbauskizzen der Bohrungen (B 4 - B 6) Anlage 8.2: Anlage 9: Datenblatt der Hochwasserrisikoabfrage Anlage 10: Entnahmeprotokolle Pumpversuch Anlage 11: Grundwassergleichenplan, Stichtagsmessung vom 29.07.2025 Anlage 12: Stammdatenblätter der Verdachtsflächen Nr. 5139 und 1145

4

1. Allgemeines und Aufgabenstellung

Die BPD Immobilienentwicklung GmbH, Niederlassung Stuttgart plant auf dem ehemaligen Betriebsgelände der Haru Präzision GmbH & Co.KG (Flurstücke 262/1 und 262/3) an der Filderstraße 119 in Leinfelden-Echterdingen, Stadtteil Musberg eine Wohnbebauung. Für dieses Projekt wurden von unserem Büro ein Baugrund- und Gründungsgutachten mit Datum 20.12.2019 sowie ein orientierendes Altlastengutachten mit Datum 20.12.2019 erstellt.

Das Areal wird aufgrund der langjährigen industriellen Nutzung im Altlastenkataster des Landratsamtes Esslingen unter der Flächen-Nummer 5139 geführt. Im Jahr 2019 kam durch unser Büro eine orientierende Altlastenuntersuchung für den Altstandort zur Ausführung. Die Ergebnisse sind in unserem Gutachten vom 20.12.2019 dokumentiert. In einer entsprechenden Neubewertung des Altstandorts durch das Landratsamt Esslingen vom 06.06.2024 wurde als Handlungsbedarf "DU" (Detailuntersuchung) festgelegt mit weiteren Aufschlüssen und Bewertung der Wirkungspfade Boden-Grundwasser (LHKW-Belastung) und Boden-Mensch (PAK-Belastung).

Unser Büro wurde durch die BPD Immobilienentwicklung GmbH, Niederlassung Stuttgart beauftragt, diese Detailuntersuchung durchzuführen. Im vorliegenden Gutachten werden deren Ergebnisse dargestellt sowie Empfehlungen zur weiteren Vorgehensweise getroffen.

Zur Bearbeitung des Auftrags standen uns folgende Unterlagen zur Verfügung:

- Auszug aus der Datenbank des Bodenschutz- und Altlastenkatasters des Landratsamts Esslingen für den Altstandort Zerspanntechnik Filderstraße 119 (VF 5139) und die Altablagerung Geländeauffüllung Filderstraße (VF 1145), Stand: 18.11.2013
- Bestandslageplan mit Höhenangaben im Maßstab 1 : 200, gefertigt mit Datum 04.03.2024 vom Vermessungsbüro Hils Ingenieure GmbH, Stuttgart
- Lageplan/Bebauungsplan im Maßstab 1 : 500, gefertigt mit Datum 06.06.2025 vom Architekturbüro ARP GmbH, Stuttgart
- Grundrisse und Schnitte im Maßstab 1 : 500, gefertigt mit Datum 09.04.2025 und 11.07.2025 vom Architekturbüro ARP GmbH, Stuttgart

2. Standortbeschreibung

2.1 Lage und Nutzung

Der Standort des geplanten Bauvorhabens liegt an der Filderstraße 119 im Stadtteil Musberg von Leinfelden-Echterdingen. Westlich grenzt das Bauvorhaben an die Bunsenstraße und im Osten wird das Grundstück vom Weilerwaldgraben begrenzt.

Das Gelände wird von Industrie- und Wohnbebauungen weitestgehend umschlossen. Getrennt durch die Filderstraße schließen sich im Süden Acker-, Wald- und Wiesenflächen des Siebenmühlentals an. Auf dem Gelände befindet sich das Betriebsgebäude der Firma Haru Präzision GmbH & Co. KG, das im Zuge der geplanten Wohnbebauung abgebrochen werden soll.

Ursächlich für die Aufnahme in das Altlastenkataster war die langjährige Nutzung von ca. 1948 bis 1987 durch Unternehmen der Holz- und Metallverarbeitung. In den 1980er Jahren wurden Tauchbäder mit 1,1,1 TCA (Trichlorethan) eingesetzt. Ab 1987 verzichtet die Firma Haru auf den Einsatz von LHKW-haltigen Kaltreinigern. Das Gelände wird aktuell noch von Drittfirmen, darunter ein Autohandel, genutzt.

Der Standort liegt nicht in einem Wasserschutzgebiet. Die nächstgelegenen Wasserschutzgebiete befinden sich ca. 6 km nordwestlich bei Stuttgart-Vaihingen und ca. 9 km südöstlich bei Neuhausen/Filder vom Standort entfernt.

2.2 Geologische und Hydrogeologische Verhältnisse

Der natürliche Untergrund wird unter Oberboden und künstlichen **Auffüllungen** von Quartär (**Lösslehm**, **Auelehme** und **Fließerde**) aufgebaut. Darunter folgen die Schichten des **Stubensandsteins** (Löwenstein-Formation) in unterschiedlichen Verwitterungsstufen.

Das Quartär stellt einen gering ergiebigen Porengrundwasserleiter dar. Die Stichtagsmessungen im Mai, Juni und Juli 2025 ergaben eine südöstliche Grundwasserfließrichtung.

Die felsartigen festen Schichten des Stubensandsteins stellen einen zweiten Aquifer dar. Bei den Schichten des Stubensandstein handelt es sich um einen schichtigen Grundwasserleiter mit ausgeprägter Vertikalgliederung in mehrere grundwasserleitende und nicht bzw. nur gering grundwasserleitende Schichten. Daher ist die vertikale Durchlässigkeit der Schichten wesentlich geringer als die in horizontaler Richtung. Die Durchlässigkeit des Sandsteins setzt sich zusammen aus der Kluftdurchlässigkeit und der Porendurchlässigkeit, die abhängig ist von der Körnung des Sandsteins.

3. Durchgeführte Untersuchungen

3.1 Ergebnisse früherer Untersuchungen

Das Gelände an der Filderstraße 119 in Musberg wird unter der Flächen-Nummer 5139 im Altlastenkataster des Landkreises Esslingen als Altlastenverdachtsfläche geführt. Aus diesem Stammdatenblatt ist die Nutzungshistorie des Grundstücks ersichtlich.

Laut der Bauakten wurde im Jahr 1940 geplant, auf dem Grundstück eine Matratzen- und Stahlwarenfabrik zu errichten. Die Pläne des Fabrikgebäudes stammen aus dem Jahr 1947. Von der Firma Karl Mayer Apothekenbau wurden an verschiedenen Standorten des Geländes Holzbearbeitungsmaschinen eingesetzt (1961) und eine Spritzlackieranlage im Dachgeschoss eingebaut (1962). Seit 1982 wurde das Grundstück durch die Firma Haru Präzision für die Metallverarbeitung benutzt. Nach einem Lageplan befand sich die Fertigung im nördlichen Bereich. Aus der CKW-Anwenderliste des WWA Kirchheim/Teck von 1994 geht hervor, dass Tauchbäder mit 1,1,1 TCA (Trichlorethan) eingesetzt wurden. Die Nutzung von 1,1,1 Trichlorethan war dem WWA Kirchheim bereits 1987 bekannt. Im Jahr 2001 wurde im nördlichen Bereich des Geländes eine neue Produktionshalle der Firma Haru Präzision gebaut.

7

Entsprechend Unterlagen aus dem Jahr 1982 wurde der größte Teil des Gebäudes durch die Firma Haru Präzision als Lager-, Büro- und Sozialräume sowie als Produktionshalle genutzt. Im Formblatt zur Überprüfung von Industrie- und Gewerbebetrieben vom 12.11.1986 hat die Firma Haru Präzision dem WWA Kirchheim eine verbrauchte Menge an 1,1,1 Trichlorethan mit 1.377 kg/Jahr angegeben. Als weitere eingesetzte Stoffe sind Hydrauliköl, Kühlschmieröl und Altöl angegeben, für die keine Schutzmaßnahmen vorhanden waren. Die Lagerung von Metallspänen erfolgte in einem Container, der in einer betonierten Grube stand. Der genaue Standort dieser Grube ist nicht dokumentiert.

Aufgrund des Einsatzes von LHKW-haltigen Lösungsmitteln und anderen wassergefährdenden Stoffen wurde die Verdachtsfläche im Jahr 2008 für die Wirkungspfade Boden-Grundwasser und Boden-Mensch mit dem Handlungsbedarf "OU, orientierende Untersuchung notwendig" eingestuft.

Auch die Verdachtsfläche Nummer 1145 (Geländeauffüllung Filderstraße) betrifft das Grundstück mit der Flurstücksnummer 262/1. Nach dem Stammdatenblatt wurden hier von 1965 bis 1968 im Bereich der Filderstraße und insbesondere im Flurstück 262/1 nördlich der Filderstraße Geländeanschüttungen mit Bauschutt, Erdaushub und Straßenaufbruch ausgeführt.

Für eine Erkundung gab es keine Erfordernis, so dass 2008 eine Einstufung in den Handlungsbedarf "B-Belassen mit Entsorgungsrelevanz" erfolgte. Dies bedeutet, dass bei Erdarbeiten Stoffe anfallen können, deren Entsorgung einen größeren Aufwand erfordern können.

Von BPD Immobilienentwicklung GmbH, Stuttgart wurde unser Büro im Jahr 2019 beauftragt, die oben genannten Verdachtsflächen orientierend zu untersuchen. Die Ergebnisse daraus sind in unserem Gutachten vom 20.12.2019 dargestellt.

Auf dieser Grundlage fordert das Landratsamt Esslingen in der Stellungnahme vom 06.06.2024 eine Detailuntersuchung (DU) mit weiteren Aufschlüssen und Bewertung der Wirkungspfade Boden-Grundwasser (LHKW) und Boden-Mensch (PAK).

3.2 Geländearbeit und Probenahme

Zur direkten Erkundung des Schichtaufbaus des Untergrunds wurden vom 23.04. bis 25.04.2025 sechs Bohrungen mit Tiefen zwischen 12,0 m (B 5 und B 6) und 15,0 m (B 1, B 2 und B 4) unter Gelände ausgeführt. Zur Ermittlung und längerfristigen Beobachtung der Grundwasserverhältnisse und der Schadstoffkonzentration wurde die Bohrung B 6 zu einer 3"-Grundwassermessstelle und alle anderen Bohrungen zu 2"-Grundwassermessstellen ausgebaut. Die angetroffenen Bodenschichten und die Ausbaudaten sind im Einzelnen in Abschnitt 4 genauer dargestellt.

Die Lage des Grundstücks ist aus Anlage 1.1 ersichtlich, die der Untersuchungspunkte ist auf dem Lageplan der Anlage 1.2 dargestellt. Die Erkundungspunkte wurden vor der Ausführung bei einem gemeinsamen Ortstermin mit dem Landratsamt Esslingen abgestimmt. Die Einmessung der Bohrungen nach Lage und Höhe erfolgte durch unser Büro auf Grundlage des vorliegenden Höhenplans.

Der erschlossene Schichtaufbau des Untergrunds wurde durch uns geologisch und bodenmechanisch aufgenommen; die Schichtprofile der Bohrungen sind auf den Anlagen 2.1 + 2.2 nach DIN 4023 graphisch dargestellt.

Aus den Anlagen 3.1 und 3.2 ist das Baugrundmodell ersichtlich. Diese Schnitte wurden durch Interpolation zwischen den einzelnen Aufschlusspunkten ermittelt. Abweichungen vom tatsächlichen Verlauf können somit nicht ausgeschlossen werden.

Ein Ergebnislageplan der PAK-Untersuchungen ist als Anlage 4, ein Ergebnislageplan der Grundwasseruntersuchungen als Anlage 5 sowie eine Fotodokumentation der Bohrungen als Anlage 6 beigefügt.

In den Tiefenbereichen der geplanten Baugrubensohle wurden Bodenluftproben entnommen, je Bohrung wurde 0,5 I Luft beprobt. Die Bodenluftproben wurden laboranalytisch durch Agrolab Labor GmbH, Bruckberg auf LHKW untersucht. Die Analysenergebnisse sind aus den Prüfberichten der Anlage 7 ersichtlich.

9

Aus den Bohrungen wurden repräsentative Bodenproben entnommen, aus denen drei Mischproben gebildet wurden. Diese Mischproben wurden laboranalytisch durch Agrolab Labor GmbH, Bruckberg gemäß der Ersatzbaustoffverordnung (EBV¹) vom 09.07.2021 auf die Parameter Materialwerte für Boden/Baggergut, Anlage 1 Tabelle 3 (TOC 400) inkl. Elution DIN19529 untersucht. Aus jeder Bohrung wurde zusätzlich noch eine Mischprobe aus den künstlichen Auffüllungen gebildet und auf die Polyzyklische Aromatische Kohlenwasserstoffe (PAK) untersucht. Die Analysenergebnisse sind aus den Prüfberichten der Anlage 7 ersichtlich.

Die Pegelausbauskizzen der Bohrungen sind in den Anlagen 8.1 + 8.2 dargestellt.

Das Datenblatt der Hochwasserrisikoabfrage ist als Anlage 9, die Entnahmeprotokolle zum Pumpversuch sind als Anlage 10, ein Grundwassergleichenplan der Stichtagsmessung vom 29.07.2025 als Anlage 11, die Stammdatenblätter der Verdachtsflächen Nr. 5139 und 1145 als Anlage 12 beigefügt.

3.3 Pumptest zur Ermittlung hydraulischer Kenndaten

Am 03.07.2025 wurde in der Messstelle B 4 ein vierstündiger Pumptest zur Bestimmung der Ergiebigkeit und der Schadstoffentwicklung ausgeführt. In der Tabelle 1 sind die Daten zu diesem Pumptest aufgelistet. Die Probenahmen zur chemischen Analyse erfolgten nach 3 Minuten, nach 35 Minuten sowie am Ende der Pumpmaßnahme (60 Minuten). Bei den Probenahmen wurden die Vor-Ort-Parameter Leitfähigkeit, Temperatur, pH-Wert sowie die geförderte Wassermenge ermittelt (siehe Anlage 10).

_

Ersatzbaustoffverordnung - EBV: Verordnung über Anforderungen an den Einbau von mineralischen Ersatzbaustoffen in technische Bauwerke vom 09.07.2021, zuletzt geändert am 13.07.2023, in Kraft getreten am 01.08.2023

Tabelle 1:

Messstellen- bezeichnung	Entnahmerate (I/sec)	RWS m u. GOK / m NHN	abges. WS m u. GOK / m NHN	Pumpen- einlauf m u. GOK
B 4	0,01	2,59 / 417,84	4,94 / 415,49	4,99

Abkürzungen: RWS = Ruhewasserspiegel GOK = Geländeoberkante

abges. WS = abgesenkter Wasserspiegel am Ende der Pumpmaßnahme

3.4 Umfang der chemischen Untersuchungen

Die Auswahl der Proben für die chemischen Untersuchungen im Labor erfolgte entsprechend den organoleptischen Befunden vor Ort, den Erkenntnissen aus der Nutzungsgeschichte bzw. den bereits durchgeführten Untersuchungen und dem vorab abgestimmten Untersuchungsumfang mit dem Landratsamt Esslingen. In den Tabellen 2 bis 5 ist der Untersuchungsumfang aufgelistet.

Tabelle 2:

Bohrung	Probenmaterial	Volumen (I)	Proben- bezeichnung	Untersuchungs- umfang
B 1		0,5	BL 1	
B 2		0,5	BL 2	
В3	Dadaulu#	0,5	BL 3	Leichtflüchtige, haloge- nierte Kohlenwasser-
B 4	Bodenluft	0,5	BL 4	stoffe (LHKW)
B 5		0,5	BL 5	
B 6		0,5	BL 6	

Tabelle 3:

Bohrung	Probenmaterial	Probenbezeichnung	Untersuchungsumfang
B 1			
B 2	MP	MP 5	
В3	Overtër		
B 4	- Quartär -		Ersatzbaustoffverordnung (EBV)
B 5		MP 6	,
B 6			
B 1 - B 6	künstliche Auffüllungen	MP 7	

Tabelle 4:

Bohrung	Probenmaterial	Probenbezeichnung	Untersuchungsumfang
B 1		MP-A-B1	
B 2	- künstliche Auffüllungen	MP-A-B2	
В3		MP-A-B3	Polyzyklische Aromatische
B 4		MP-A-B4	Kohlenwasserstoffe (PAK)
B 5		MP-A-B5	
B 6		MP-A-B6	

Tabelle 5:

Bohrung	Probenmaterial	Probenbezeichnung	Untersuchungsumfang
B 1		GWM B1/WP 1	
B 2		GWM B2/WP 1	
В3		GWM B3/WP 1	
	GWM B4/WP 1 Grundwasser PV¹ WP 1	GWM B4/WP 1	
D 4		PV ¹ WP 1	Leichtflüchtige, halogenierte Kohlenwasserstoffe (LHKW)
B 4		PV ² WP 2	,
		PV ³ WP 3	
B 5		GWM B5/WP 1	
B 6		GWM B6/WP 1	

Abkürzungen: PV¹, PV², PV³ = Pumpversuch, Probenahme nach 3 min, 35 min und 60 min Förderdauer

Die Analysenergebnisse der Agrolab Labor GmbH, Bruckberg sind aus der Anlage 7 ersichtlich.

4. Ergebnisse der Untersuchungen

4.1 Schichtaufbau des Untergrunds

Die Ansatzpunkte der Bohrungen lagen in Grünflächen, daher wurde zuoberst ein humoser ca. 20 cm mächtiger **Oberboden** angetroffen.

In allen Aufschlüssen wurden unter dem Oberboden künstliche **Auffüllungen** erschlossen. Diese bestanden aus tonigem bis stark tonigem, z.T. schwach kiesigem und schwach sandigem bis stark sandigem Schluff von weicher bis halbfester Konsistenz. Es waren Fremdbestandteile wie Kalkstein-, Tonstein-, Sandsteinstücke, Ziegel-, Betonreste, Schlacke, Schotter, Alufolie und Plastik eingelagert. In Bohrung B 3 fand sich ab 0,8 m u. Gel. eine 30 cm dicke Splittlage in den Auffüllungen.

Unter den künstlichen Auffüllungen folgte die Schichtfolge des Quartär (**Lösslehm, Auelehm** und **Fließerde**). Diese bestand aus schwach tonigem bis stark tonigem, schwach sandigem bis stark sandigem, z.T. schwach feinsandigem, schwach kiesigem Schluff mit teilweise organischen Beimengungen und variierenden Anteilen aus Sandstein- und Kalksteinstücken. Die Konsistenz dieser Schichten variierte von breiig bis steif, z.T. bis halbfest. In nachfolgender Tabelle 6 gehen die Obergrenzen dieser Schichten hervor.

Tabelle 6:

Aufaabbaaa	Oberkante Quartär		
Aufschluss	m unter Gelände	m NHN	
B 1	0,7	423,2	
B 2	0,4	423,8	
В 3	1,9	419,1	
B 4	1,4	419,0	
B 5	1,0	419,4	
В 6	1,3	419,4	

Auf die Schichten des Quartärs folgte zur Tiefe die unterschiedlich verwitterte Schichtfolge des Stubensandsteins (Löwenstein-Formation). In den Bohrungen B 1 und B 2 setzte diese mit bindigen Lagen aus schwach schluffigem, stark sandigem Ton bzw. stark schluffigem, tonigem Sandstein ein. In den Schichtprofilen wird dieser Abschnitt als "Stubensandstein, stark verwittert" bezeichnet (Verwitterungsstufe 3²). Die Obergrenze dieser Schichten geht aus folgender Tabelle 7 hervor.

Tabelle 7:

Aufschluss	Oberkante "Stubensan	dstein, stark verwittert"
Auischluss	m unter Gelände	m NHN
B 1	8,3	415,6
B 2	8,4	415,8
В 3	_*	-
B 4	_*	-
B 5	_*	-
В 6	_*	-

^{*} Schichtabschnitt nicht angetroffen

Weiter zur Tiefe gingen diese stark verwitterten Schichten in eine stark variierende Wechselfolge von festen bis harten, z.T. stückigen Sandsteinen und festen, z.T. stückigen Schlufftonsteinen über. Die Sandsteine wiesen unterschiedliche Körnungen und Klüftungsgrade auf. Bereichsweise fand sich auf den Klüften ein bindiger Kluftbelag, bestehend aus tonigem bis stark tonigem Schluff und Sand. Der genaue Schichtaufbau ist aus den Schichtprofilen der Anlagen 2.1 - 2.2 ersichtlich. Gemäß DIN EN ISO 14689-1 wurde dieser Schichtabschnitt als "Stubensandstein, mäßig verwittert" bezeichnet (Verwitterungsstufe 2). Die Oberkante dieses Schichtabschnittes ist aus Tabelle 8 zu entnehmen.

DIN EN ISO 14689-1: Benennung und Klassifizierung von Fels, Teil 1, Anhang A, Fassung 2003

Tabelle 8:

Aufschluss	Oberkante "Stubensand	lstein, mäßig verwittert"
Auischluss	m unter Gelände	m NHN
B 1	_*	-
B 2	13,0	411,2
В 3	6,2	414,8
B 4	6,8	413,6
B 5	7,2	413,2
В 6	6,5	414,2

^{*} Schichtabschnitt nicht angetroffen

In den Bohrungen B 1, B 2 und B 3 fand sich an der Bohrendtiefe ein harter Sandstein, der in den Schichtprofilen als "**Stubensandstein, schwach verwittert**" bezeichnet wird (Verwitterungsstufe 1). Aus Tabelle 9 ist die Oberkante dieses Schichtabschnitts zu entnehmen.

Tabelle 9:

Aufaabluaa	Oberkante "Stubensands	tein, schwach verwittert"
Aufschluss	m unter Gelände	m NHN
B 1	13,8	410,1
B 2	14,9	409,3
В 3	12,1	408,9

4.2 Hydrogeologische Verhältnisse

Während der Bohrarbeiten wurden in allen Bohrungen direkte Grundwasserzutritte zwischen 414,4 m NHN und 418,7 m NHN festgestellt.

Zur längerfristigen Beobachtung der Grundwasserverhältnisse wurden die Bohrungen als 2"- bzw. 3"-Grundwassermessstellen (Überflur) ausgebaut. Die nachfolgende Tabelle 10 gibt eine Übersicht über die Ausbaudaten der Grundwassermessstellen. Die Pegelausbauskizzen sind aus den Anlagen 8.1 und 8.2 ersichtlich.

Tabelle 10:

Messstellen- bezeichnung	Geländehöhe [m NHN]	Tiefe [m u. GOK]	Filterstrecke [m u. GOK]	Ausbau- durchmesser
B 1	423,87	8,3	3,2-8,3 (Q)	DN 50
B 2	424,21	6,0	2,0-6,0 (Q)	DN 50
В 3	420,98	6,0	2,0-6,0 (Q)	DN 50
B 4	420,43	5,3	2,3-5,3 (Q)	DN 50
B 5	420,40	6,4	2,4-6,4 (Q)	DN 50
B 6	420,70	6,0	2,0-6,0 (Q)	DN 80

Q = Filterstrecke in den quartären Talablagerungen

Aus den Grundwassermessstellen wurden am 17.06.2025 Pumpproben zur chemischen Analyse entnommen. Die Protokolle dazu sind nicht beigefügt.

Am 14.05.2025, 17.06.2025 und 29.07.25 wurden zudem Stichtagsmessungen der Wasserstände in allen Grundwassermessstellen durchgeführt.

Die in den Beobachtungspegeln gemessenen Grundwasserstände sind in Tabelle 11 zusammengefasst.

Tabelle 11:

		Grund	wasserstände i	n den Mess	stellen	
Messstellen- bezeichnung	14.05.2	025	17.06.2	025	29.07.2	025
	m u. GOK	m NHN	m u. GOK	m NHN	m u. GOK	m NHN
B 1	4,55	419,32	4,63	419,24	4,92	418,95
B 2	4,34	419,87	4,43	419,78	4,68	419,53
В 3	1,73	419,25	1,85	419,13	2,24	418,74
B 4	2,16	418,27	2,27	418,16	2,57	417,86
B 5	3,35	417,05	3,46	416,94	3,78	416,62
B 6	2,98	417,72	3,06	417,64	3,42	417,28

Für die Messung am 29.07.2025 wurde ein Grundwassergleichenplan erstellt (Anlage 11). Hieraus ergibt sich eine Fließrichtung in südöstliche Richtung.

Die nach Abschluss der Bohrarbeiten gemessenen, höchsten Wasserstände sind aus den Schichtprofilen der Anlagen 2.1 und 2.2 ersichtlich.

Wie die Messungen zeigen, zirkuliert das Grundwasser in den besser durchlässigen Zonen des Quartärs. Die Höhenlage des Grundwasserspiegels unterliegt erfahrungsgemäß jahreszeitlichen und witterungsbedingten Schwankungen. Der höchstmögliche Grundwasserstand ist uns nicht bekannt; er könnte nur anhand langfristiger Pegelmessungen ermittelt werden. Es muss aber davon ausgegangen werden, dass er über die festgestellten Niveaus ansteigen kann.

In Abhängigkeit von Jahreszeit und Witterungsverlauf muss auch oberhalb des Grundwasserspiegels mit einer gelegentlichen Sickerwasserführung gerechnet werden.

Unabhängig hiervon ist im vorliegenden Fall die Hochwassergefährdung durch den Weilerwaldgraben zu berücksichtigen. Hierzu wurden von uns die in der Anlage 9 beigefügten Hochwasserdaten erhoben. Nach diesen Daten liegt für das Grundstück das Extreme Hochwasser HQ_{EXTREM} bei 420,4 m NHN. Dies bedeutet, dass bei HQ_{EXTREM} das Grundstück teilweise überflutet wird.

4.3 Ergebnisse des Pumptests in der Messstelle B 4

Zur Ermittlung der hydraulischen Kenndaten wurde ein vierstündiger Pumptest in der Messstelle B 4 durchgeführt. Die Messungen der Wasserstände während des Pumpversuches sowie die Wiederanstiegsmessungen im Pegel wurden nach orientierenden Bestimmungsmethoden (in Hölting, Hydrogeologie) ausgewertet. Es ist jedoch darauf hinzuweisen, dass aufgrund des 2"-Ausbaus nur eine Pumpe mit geringer Förderleistung (0,16 l/s) eingesetzt werden konnte und der Grundwassernachstrom gering war, was zu einer starken Absenkung des Grundwasserspiegels in der Messstelle führte. Daher sind die Angaben zur Transmissivität bzw. Durchlässigkeit als Näherungswerte zu verstehen.

Tabelle 12:

Messstellen-		Ausgebaute Aquifer-	Transmissivität	k _f -Wert [m/s]		
bezeichnung Pumpdauer [h]		mächtigkeit [m]	[m²/s]			
B 4	1,0	3,0	1,04 x 10 ⁻⁵	3,5 x 10 ⁻⁶		

Die Auswertung des Pumptests ergab eine Transmissivität von 1,04 x 10^{-5} m²/s. Für die hydraulische Leitfähigkeit (k_f -Wert) ergibt sich bei einer Aquifermächtigkeit von 3,0 m entsprechend ein Wert von 3,5 x 10^{-6} m/s.

5. Analysenergebnisse der Erkundungen

5.1 Bodenluft

Während der Bohrungen wurden Bodenluftproben aus den Bohrlöchern im Tiefenbereich der geplanten Baugrubensohle entnommen und laboranalytisch durch Agrolab Labor GmbH, Bruckberg, im Hinblick auf den Wirkungspfad Boden-Grundwasser (Bundes-Bodenschutz- und Altlastenverordnung³) auf leichtflüchtige, halogenierte Kohlenwasserstoffe (LHKW) untersucht.

Bei den durchgeführten Bodenluftuntersuchungen wurden in keiner der acht analysierten Proben (BL 1 bis BL 8) LHKW nachgewiesen.

5.2 Boden

Aus den Bohrungen wurden charakteristische Bodenproben entnommen, aus denen eine Mischprobe aus den künstlichen Auffüllungen und zwei Mischproben aus dem natürlich anstehenden Quartär gebildet wurden.

- MP 5 = Quartär
- MP 6 = Quartär
- MP 7 = künstliche Auffüllungen

Diese Mischproben wurden laboranalytisch durch Agrolab Labor GmbH, Bruckberg gemäß der Ersatzbaustoffverordnung (EBV) vom 09.07.2021 untersucht.

Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) vom 09. Juli 2021 (BGBI. I S. 2598, 2716), die gemäß Art. 5 Abs. 1 Satz 1 dieser Verordnung am 01.08.2023 in Kraft getreten ist

In der Mischprobe **MP 5 (Quartär)** wurde mit 15 mg/kg ein höherer PAK-Wert im Feststoff festgestellt als der BM-F2 Grenzwert von 9 mg/kg. Außerdem überschreitet der Wert im Feststoff für Benzo(a)pyren mit 1,0 mg/kg den BM-0 Grenzwert von 0,3 mg/kg. Somit ergibt sich für die Mischprobe die Einstufung in die Kategorie **BM-F3**.

Die Analyse der Probe **MP 6 (Quartär)** zeigt einen erhöhten PAK-Wert von 4,5 mg/kg im Feststoff und überschreitet somit den BM-0 Grenzwert von 3 mg/kg. Des Weiteren liegt der Wert von Benzo(a)pyren mit 0,32 mg/kg über dem BM-0 Grenzwert von 0,3 mg/kg. Daraus erfolgt eine Einstufung der Probe in die Kategorie **BM-0***.

Bei der Mischprobe **MP 7 (künstliche Auffüllungen)** wurden keine Grenzwertüberschreitungen der jeweiligen BM-0 Grenzwerte nachgewiesen. Somit ergibt sich eine Einstufung in die Kategorie **BM-0**.

In der Tabelle 13 sind die Analysenergebnisse und die daraus folgende Einstufung der nach EBV untersuchten Bodenproben dargestellt.

Tabelle 13:

Bohrung (Entnahmetiefe)	Probenbe- zeichnung	Geologie	Grenzwertüber- schreitender Parameter	BM-0 Grenzwerte	EBV- Klasse
B 1 (0,7 - 3,0 m)			PAK = 15 mg/kg	PAK = 3 mg/kg	
B 2 (0,4 - 3,5 m)	MP 5	Quartär			BM-F3
B 3 (1,9 - 3,0 m)			B(a)p = 1,0 mg/kg	B(a)p = 0,3 mg/kg	
B 4 (1,4 - 3,0 m)			PAK = 4,5 mg/kg	PAK = 3 mg/kg	
B 5 (1,0 - 3,5 m)	MP 6	Quartär			BM-0*
B 6 (1,3 – 4,0 m)			B(a)p = 0,32 mg/kg	B(a)p = 0,3 mg/kg	
B 1 - 6 (0,2 - 1,5 m)	MP 7	künstliche Auffüllungen	_*	-	BM-0

^{*} keine Grenzwertüberschreitung festgestellt

Aus den künstlichen Auffüllungen jeder Bohrung wurden zusätzlich noch charakteristische Bodenproben entnommen, aus denen jeweils eine Mischprobe pro Bohrung gebildet wurde. Diese Mischproben wurden folgendermaßen bezeichnet:

- MP-A-1 (B 1)
- MP-A-2 (B 2)
- MP-A-3 (B 3)
- MP-A-4 (B 4)
- MP-A-5 (B 5)
- MP-A-6 (B 6)

Diese Mischproben wurden laboranalytisch durch Agrolab Labor GmbH, Bruckberg im Hinblick auf eine geplante Wohnbebauung des Geländes gemäß Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für den Wirkungspfad Boden-Mensch auf PAK untersucht.

In den Mischproben MP-A-1, MP-A-3, MP-A-4, MP-A-5 und MP-A-6 wurden nur geringfügige Werte von Benzo(a)pyren nachgewiesen. Der Prüfwert von 1 mg/kg B(a)p für den Wirkungspfad Boden-Mensch (Wohngebiete) wird eingehalten.

Das Analysenergebnis der Mischprobe **MP-A-2** zeigt einen erhöhten Wert für Benzo(a)pyren von 3,5 mg/kg. Die Probe überschreitet somit den Prüfwert für den Wirkungspfad Boden-Mensch (Wohngebiet) von 1 mg/kg B(a)p. Der Grenzwert für Industrie- und Gewerbegrundstücke (momentane Nutzung) von 5 mg/kg B(a)p wird eingehalten.

Die nachfolgende Tabelle 14 zeigt die Analysenergebnisse der auf Polyzyklische aromatische Kohlenwasserstoffe (PAK) untersuchten Bodenproben. Aus der Anlage 4 geht die räumliche Zuordnung der PAK-Untersuchungen hervor.

Tabelle 14:

Bohrung	Geologie	Probenbezeichnung	PAK-Summe [mg/kg]	B(a)p [mg/kg]
B 1	künstliche Auffüllungen	MP-A-1	4,2	0,34
B 2		MP-A-2		3,5
В 3		MP-A-3	0,30	<0,05
B 4		MP-A-4	n.b.	<0,05
B 5		MP-A-5	15	0,85
B 6		MP-A-6	0,12	<0,05
Prüfwert	: Wirkungspfad Boden-Me	_*	1	

^{*} Die Prüfwerte beziehen sich auf den Gehalt an Benzo(a)pyren (B(a)p) im Boden.

5.3 Grundwasser

Bei der Stichtagsmessung am 17.06.2025 sowie bei dem Pumpversuch am 03.07.2025 wurden Grundwasserproben aus den Messstellen entnommen und laboranalytisch durch Agrolab Labor GmbH, Bruckberg auf den Parameter LHKW untersucht.

Nach den durchgeführten Grundwasseranalysen überschreiten nur die Proben aus der Messstelle GWM B4 die Geringfügigkeitsschwellenwerte (GFS) nach LAWA⁴. Nach der LAWA-Schrift zur "Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser" Fassung 2016 bezeichnet die Geringfügigkeitsschwelle die Konzentration, bei der trotz einer Erhöhung der Stoffgehalte gegenüber regionalen Hintergrundwerten keine relevanten ökotoxischen Wirkungen auftreten können und die Anforderungen der Trinkwasserverordnung oder entsprechend abgeleiteter Werte eingehalten werden. Die GFS bilden die Grenze zwischen einer geringfügigen Veränderung der chemischen Beschaffenheit des Grundwassers und einer schädlichen Verunreinigung.

Bund-/Länder**a**rbeitsgemeinschaft **Wa**sser (LAWA): Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser (Handlungshilfe der überarbeiteten Fassung von 2016)

Die Verunreinigungen gehen überwiegend auf Tetrachlorethen (PCE) und Trichlorethen (TCE) zurück. In allen Grundwasserproben lag der Parameter 1,1,1 Trichlorethan, der nach dem Stammdatenblatt auf dem Gelände eingesetzt wurde, unterhalb der Nachweisgrenze. Im Zuge des durchgeführten Pumpversuchs war nur eine minimale Zunahme der LHKW-Konzentrationen festzustellen, deren Größenordnung im Rahmen der Messungenauigkeit liegt.

Die in der Probe aus der GWM B 5 ermittelte LHKW-Konzentration von 8,5 μ g/l lag noch unterhalb der Geringfügigkeitsschwellenwerte.

In der Tabelle 15 sind die Ergebnisse aller Grundwasserproben aus den Grundwassermessstellen zusammengefasst. Die Ergebnisse der Grundwasseruntersuchungen sind auch im Lageplan der Anlage 5 dargestellt.

Tabelle 15:

Bohrung	Probenbezeichnung	LHKW-Summe [µg/l]	PCE+TCE [μg/l]	
B 1	GWM B1/WP 1	0,50	0,5	
B 2	GWM B2/WP 1	n.b.	n.b.	
В3	GWM B3/WP 1	n.b.	n.b.	
	GWM B4/WP 1	58,1	49	
B 4	PV ¹ WP 1	44,0	38,8	
D 4	PV ² WP 2	45,7	41,9	
	PV ³ WP 3	47,3	43,3	
B 5	GWM B5/WP 1	8,5	5,8	
B 6	GWM B6/WP 1	n.b.	n.b.	
Geringfügigkeit	sschwellenwert nach LAWA 2016	20	10	

Abkürzungen: n.b. = nicht bestimmbar

LHKW = Leichtflüchtige, halogenierte Kohlenwasserstoffe

PV¹, PV², PV³ = Pumpversuch, Probenahme nach 3 min, 35 min und 60 min Förderdauer

PCE = Tetrachlorethen TCE = Trichlorethan

6. Bewertung der Analysenergebnisse

6.1 Bewertungsgrundlagen

Die Bewertung der Untersuchungsergebnisse erfolgt nach der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) vom 09. Juli 2021. In dieser Verordnung werden im Anhang 2 sogenannte Prüf-, Maßnahme- und Vorsorgewerte aufgeführt, anhand derer schädliche Bodenveränderungen unter Berücksichtigung der Nutzung (Wirkungspfad) bewertet werden können. Aufgrund einer weitgehenden Versiegelung des Gewerbeareals kann eine Beeinträchtigung von Menschen und Nutzpflanzen durch Schadstoffe im Boden derzeit ausgeschlossen werden. Somit ist der Wirkungspfad Boden-Grundwasser maßgeblich. Im Hinblick auf die geplante Wohnbebauung werden die im Auffüllungsmaterial gemessenen PAK-Konzentrationen mit den entsprechenden Vorsorgewerten der BBodSchV verglichen.

Sofern sich keine Vorsorge- bzw. Hintergrundwertüberschreitungen ergeben, kann davon ausgegangen werden, dass am Ort der Beurteilung der Prüfwert für den Wirkungspfad Boden-Grundwasser aus der BBodSchV für die untersuchten Schadstoffe eingehalten ist. Dann gilt der Schadensverdacht in der Regel als ausgeräumt. Bei Überschreitungen der Vorsorge- bzw. Hintergrundwerte werden weiterführende Untersuchungen (z.B. Elutionsversuche) notwendig. Für deren Bewertung wird dann der Prüfwert für den Wirkungspfad Boden-Grundwasser aus der BBodSchV herangezogen.

Zur Prüfung, inwieweit das Grundwasser durch Schadstoffe verunreinigt ist, bzw. zur Beurteilung eines Grundwasserschadens können die Geringfügigkeitsschwellenwerte (GFS-Werte) der Bund-/Länderarbeitsgemeinschaft Wasser (LAWA) in der aktualisierten und überarbeiteten Fassung von 2016 herangezogen werden. Bei Unterschreitungen der Geringfügigkeitsschwellen gilt der Schadensverdacht in der Regel als ausgeräumt. Dagegen liegt bei einer Überschreitung ein Grundwasserschaden vor.

Für die Bewertung der Schadstoffgehalte in der Bodenluft bezüglich einer Grundwassergefährdung sind keine Prüfwerte vorhanden. Da jedoch keine Belastungen in der Bodenluft festgestellt wurden, besteht keine Gefährdung für die geplante Nutzung.

Für die künftige Nutzung ist ein reines Wohngebiet vorgesehen. Da das Gelände größtenteils versiegelt ist und bei einem Rückbau der Gebäude das derzeitige Oberflächenniveau verändert wird, war eine Oberbodenbeprobung der Bodenschichten in 0 bis 0,3 m Tiefe mit einem verhältnismäßigen Aufwand nicht durchführbar und auch nicht sinnvoll. Um dennoch erste Aussagen hinsichtlich des Gefährdungspotentials bei einer Umnutzung zu einem Wohngebiet bzw. zur gegenwärtigen Nutzung als Gewerbefläche treffen zu können, werden im Abschnitt 6.4 die Ergebnisse der oberflächennahen Bodenproben aus den künstlichen Auffüllungen mit den entsprechenden Prüfwerten für den Wirkungspfad Boden-Mensch (Wohngebiet) verglichen.

6.2 Abfalltechnische Bewertung

Die Abfalltechnische Bewertung erfolgt über die in Abschnitt 5.2 dargestellten Untersuchungen gemäß EBV. Aus diesen Ergebnissen geht hervor, dass in einigen Untersuchungsbereichen erhöhte Werte von PAK, insbesondere Benzo(a)pyren zu finden sind.

Die Analyse der Mischprobe MP 5 ergab eine Einstufung in die Kategorie BM-F3, diese Einstufung deutet auf eine erhöhte Belastung in den Bereichen der Bohrungen B 1 bis B 3 hin. In der Mischprobe MP 6 zeigten sich nur geringfügige Grenzwertüberschreitungen, weshalb hier die Einstufung in die Klasse BM-0* erfolgte. Aus der Analyse der Mischprobe MP 7, die aus den künstlichen Auffüllungen aller Bohrungen erstellt wurde, ergab sich keine Überschreitung der BM-0 Grenzwerte.

Somit ergeben sich nur für den Bereich der Bohrungen B 1 bis B 3 erhöhte Anforderungen an die Verwertung/Entsorgung des Bodenmaterials.

6.3 Bewertung Wirkungspfad Boden-Grundwasser

Aus der Tabelle 15 geht hervor, dass in allen Proben aus der GWM B 4 die Grundwasserbelastung durch LHKW über den entsprechenden GFS-Werten für den Summenparameter LHKW und die Summe aus PCE+TCE lagen. Im Umfeld der Bohrung B 4 liegt somit eine schädliche Grundwasserveränderung durch LHKW vor. Die Größenordnung der Kontamination beträgt ca. das 2 bis 2,5-fache der GFS-Werte. Zum Vergleich kann angeführt werden, dass der Einleitwert in die Kanalisation i.a. bei 50 µg/l liegt. Die Analysenergebnisse weisen hierzu niedrigere Werte auf. Eine Grundwassersanierung im Bereich der Bohrung B 4 wäre bei diesen Gehalten u.E. unverhältnismäßig.

Bei Antreffen von Grundwasser während der Bauphase könnte das geförderte Wasser nach Durchlaufen eines Absetzbeckens in die Kanalisation eingeleitet werden. U.E. sollte die Grundwasser-Verunreinigung über ein halbjährliches Monitoring bis zum Baubeginn kontrolliert werden. Aus den durchgeführten Untersuchungen ergaben sich keine Hinweise auf die Ursache der Grundwasserverunreinigung, die überwiegend auf PCE und TCE zurückgeht. Eine Verunreinigung durch 1,1,1 Trichlorethan, das nach der historischen Erhebung auf dem Gelände eingesetzt wurde, wurde nicht festgestellt.

6.4 Bewertung Wirkungspfad Boden-Mensch

Bei der Untersuchung von Boden im Hinblick auf den Wirkungspfad Boden-Mensch auf PAK wurde lediglich in den Auffüllungen aus der Bohrung B 2 ein Schadstoffgehalt nachgewiesen, der über dem Prüfwert für Wohngebiete lag. Da das Grundstück derzeit gewerblich genutzt wird, wird das Ergebnis dem Prüfwert für Gewerbegebiete gegenübergestellt. Dieser Prüfwert von 5 mg/kg B(a)p wird durch das Untersuchungsergebnis eingehalten. Dieser Bereich liegt in der geplanten Baugrube, welcher im Zuge des Aushubs vollständig ausgeräumt wird. Somit ergibt sich keine Beeinträchtigung für den Wirkungspfad Boden-Mensch im Hinblick auf die geplante Wohnnutzung.

In den übrigen Proben wurden PAK-Konzentrationen unter dem Prüfwert für Wohngebiete nachgewiesen bzw. lagen sie unter der Nachweisgrenze. Eine Gefährdung durch PAK für Beschäftige kann somit ausgeschlossen werden.

7. Zusammenfassung und Hinweise

Auf dem ehemaligen Betriebsgelände der Haru Präzision GmbH & Co.KG (Flurstücke 262/1 und 262/3) an der Filderstraße 119 in Leinfelden-Echterdingen, Stadtteil Musberg wurden zusätzliche technische Erkundungen mittels Rammkernbohrungen bis in Tiefen von 12,0 m und 15,0 m durchgeführt. Dabei wurden Boden-, Bodenluft- und Wasserproben entnommen und auf die relevanten Schadstoffe untersucht.

Bei den Geländearbeiten wurden unter den Oberflächenbefestigungen künstliche Auffüllungen angetroffen, deren Mächtigkeit überwiegend unter 1,9 m lag. Unter den Auffüllungen folgten quartäre Schichten, die von Schichten des Stubensandsteins unterlagert wurden. Im Quartär ist eine geringergiebige Grundwasserführung vorhanden. Der Grundwasserflurabstand variierte im Untersuchungszeitraum zwischen 1,7 m und 4,9 m unter Gelände.

Die Vorklassifikation der bei künftigen Baumaßnahmen anfallenden Böden hinsichtlich der Verwertung/Entsorgung ergab, dass diese überwiegend frei verwertbar sind. Für die künstlichen Auffüllungen ist bei der Verwertung der Anteil an Fremdbestandteilen zu beachten.

Bei den Untersuchungen wurden in den künstlichen Auffüllungen Belastungen durch PAK nachgewiesen. Diese stellen hinsichtlich des Wirkungspfades Boden-Mensch im Ausblick auf die geplante Bebauung keine Gefährdung für Menschen dar.

Im Grundwasser wurde im Bereich der Bohrung B 4 eine geringfügige schädliche Verunreinigung durch LHKW, insbesondere Tetrachlorethen und Trichlorethen festgestellt. Die Konzentrationen des nachweislich auf dem Gelände eingesetzten 1,1,1 Trichlorethan lagen unter der Nachweisgrenze. Im Zuge der Untersuchungen ergaben sich keine Hinweise auf die Quelle der Grundwasserverunreinigungen. Die Grundwasserverunreinigung durch LHKW liegt u.E. in einer tolerierbaren und nicht sanierungserforderlichen Größenordnung vor.

Auf Grundlage der Ergebnisse der weiterführenden Altlastenuntersuchung empfehlen wir folgende Maßnahmen:

- Im Rahmen der geplanten Umnutzung des Areals zur Wohnbebauung werden die Flächen auf der Gewerbefläche entsiegelt. Die partiell festgestellten PAK-Belastungen werden im Zuge der Baumaßnahme ausgeräumt.
- Sofern die Baumaßnahmen nicht in absehbarer Zeit begonnen werden, sollte die Grundwasserverunreinigung über halbjährliche Probenahmen in den Messstellen kontrolliert werden.

ANGEWANDTE
GEOWISSENSCHAFTEN
STEFFEN POTTHOFF & GABRIEL BRÜTSCH
BERATENDE INGENIEURE #

26

8. Schlussbemerkungen

Im vorliegenden Gutachten wurden die Ergebnisse der Detailuntersuchung (DU) auf dem Altstand-

ort Zerspannungstechnik Filderstraße 119 in Leinfelden-Echterdingen, Musberg dargestellt. Die

Ergebnisse beziehen sich auf die Untersuchungsstellen, die durchgeführten Analysen und die uns

zur Verfügung gestellten Unterlagen.

Abweichungen können nicht ausgeschlossen werden. Aufgrund der Ergebnisse besteht eine Ent-

sorgungsrelevanz, so dass bei zukünftigen Baumaßnahmen auf dem Gelände weitere Untersu-

chungen hinsichtlich der Entsorgung/Deponierung erforderlich sind.

Im Bereich der Messstelle GWM B 4 wurde eine Grundwasserverunreinigung durch LHKW festge-

stellt. Diese Grundwasserkontamination könnte über ein halbjährliches Monitoring bis zum Beginn

der Bauphase beobachtet werden.

Die im Gutachten enthaltenen Angaben beziehen sich auf den untersuchten Bereich, eine Übertra-

gung auf benachbarte Bereiche ist nicht möglich.

In Zweifelsfällen sollten wir verständigt werden. Für die Beantwortung von Fragen, die im Zuge der

weiteren Planung und Ausführung auftreten, stehen wir gerne zur Verfügung.

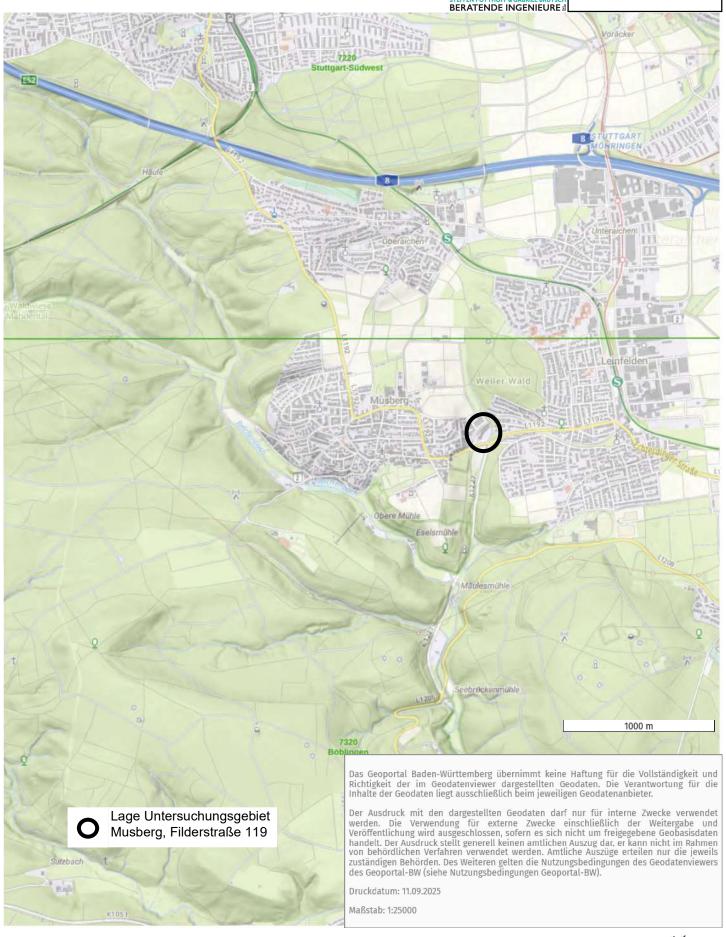
Tübingen, den 15. September 2025

Daniel Böckle

Master of Science, M.Sc.

Gabriel Brütsch

Master of Science, M.Sc.


Beratender Ingenieur (IngBW)

unter Mitarbeit von:

Herbert Stäblein Dipl.-Geol.

Geoportal Baden-Württemberg

Anlage 1.1
zum Gutachten
GEOWISSENSCHAFTEN
VOM 15.09.2025

https://www.geoportal-bw.de

Dienste: siehe https://www.geoportal-bw.de/quelle & https://www.geoportal-bw.de/nutzungsbedingungen

ANGEWANDTE GEOWISSENSCHAFTEN BERATENDE INGENIEURE

Projekt: Leinfelden-Echterdingen, Musberg Altlasten (DU) Filderstraße 119

Anlage 2.1 zum Gutachten vom 15.09.2025

B 1 (2"-Pegel)

423,87 m NHN

13.80

14.05.2025

Schluff, tonig, humos, Wurzeln, steif, dunkelbraun, Oberboden 0.20 Schluff, tonig, stark sandig, stark kiesig, Schotter, weich - steif, braungrau, Auffüllung 0.70 Schluff, tonig, stark sandig, organisch, steif - halbfest, gelbbraun, dunkelbraun, Lösslehm 2.30 Schluff, stark tonig, stark sandig, organisch, steif, dunkelbraun, 2.60 UG TG = 420,60 m NHN Schluff, stark sandig, organisch, Sandsteinstücke, sandige Lagen, 4.34 (419.87) weich - steif, rotbraun, braun, Fließerde 4.55 (419.32) 4.60 Schluff, stark sandig, organisch, Sandsteinstücke, steif - halbfest, 6.50 Schluff, schwach tonig, stark sandig, Sandsteinstücke, steif, rotbraun, gelbbraun, Fließerde 8.30 Ton, schwach schluffig, stark sandig, sandige Lagen, Sandsteinstücke, steif, rotbraun, hellgrau, Stubensandstein, stark verwittert Sandstein, zerbohrt, stark schluffig, tonig, Sandsteinstücke, fest, rotbraun, Stubensandstein, stark verwittert 10.80 Schluff, stark tonig, organisch, sandige Lagen, steif, dunkelgrau, Stubensandstein, stark verwittert 12.00 Ton, schwach schluffig, stark sandig, Sandsteinstücke, steif
- halbfest, graubraun, Stubensandstein, stark verwittert 12.40 Sandstein, zerbohrt, stark schluffig, schwach tonig, Sandsteinstücke, 13.20 fest, rotbraun, Stubensandstein, stark verwittert Schluff, schwach tonig, stark sandig, Sandsteinstücke, halbfest,

braun - rotbraun, Stubensandstein, stark verwittert Sandstein, zerbohrt, fest - hart, hellgrau, gelbbraun, ockergelb, Stubensandstein, schwach verwittert

B 2 (2"-Pegel)

424.21 m NHN

UG TG = 421,34

14.05.2025

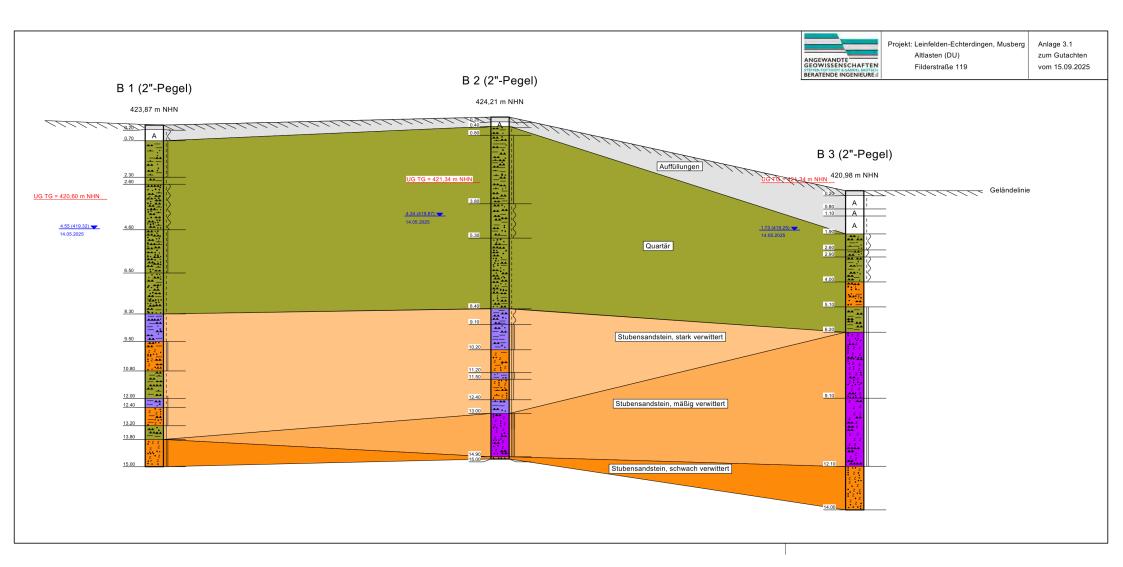
0.20	\mathcal{F}	Α.		Schluff, tonig, humos, Wurzeln, steif, dunkelbraun, Oberboden
	_/ <u>[</u>		<u>/</u>	Schotter, schwach sandig, stark schluffig, schwach tonig, Ziegelreste,
0.40	//⊑	- :-	ΝŅ	graubraun, Auffüllung
			lλ	Schluff, stark tonig, stark sandig, Sandsteinstücke, steif, rotbraun,
0.80	٠ ا		\-	<u>Au</u> elehm
	1	=	i	
HN	1		i	Schluff, stark tonig, stark sandig, Sandsteinstücke, organisch,
	1	==	1	steif - halbfest, rotbraun - braun, Fließerde
3.80	13		1	
3.60			1	
	1	_	:>	Schluff, stark tonig, stark sandig, weich - steif, rotbraun -
	-	<u>-</u> -	į)	braun, Fließerde
5.30		:	:>	
		-	1	
			į	
	÷	•	i	
			i	Schluff, stark sandig, schwach tonig, Sandsteinstücke, steif,
			1	rotbraun, grau, Fließerde
			!	
8.40	-		i	
0.10	•		5	Ton, schwach schluffig, stark sandig, sandige Lagen, weich -
9.10	-	=:	$\frac{1}{2}$	steif, rotbraun, Stubensandstein, stark verwittert
	3	≕.		Ton, schwach schluffig, schwach sandig, Sandsteinstücke, halbfest
40.00	Į.	<u></u> :	Ш	- fest, graubraun - grau, Stubensandstein, stark verwittert
10.20	- F	z z	₩	
	•	_		Sandstein, zerbohrt, stark schluffig, schwach tonig, Sandsteinstücke, fest, graubraun, Stubensandstein, stark verwittert
11.20	,z	z	₩.	
	Z	z.•	V	Ton, stark sandig, Sandsteinstücke, sandige Lagen, halbfest -
11.50	-/ I	=		<u>fes</u> t, graubraun, gelbbraun, Stubensandstein, stark verwittert Sandstein, zerbohrt, stark schluffig, stark tonig, Sandsteinstücke.
	1	_ z	JI.	organisch, fest, graubraun, gelbbraun, Stubensandstein, stark
12.40	∕╚	=-	V	<u>ver</u> wittert
	/ <u> 2</u>	, Z	N	Ton, stark schluffig, schwach sandig, Sandsteinstücke, organisch,
13.00	J 👱	Ž.	⊪	halbfest, gelbbraun, Stubensandstein, stark verwittert
	÷	Z Z	Ш	Schluffsandstein - Sandstein, Wechellagerung, zerbohrt, sandige
	Z	z Z	Ш	Lagen, halbfest - fest, gelbbraun, rotbraun, Stubensandstein, mäßig verwittert
		-	Ш	Sandstein, hart, gelbbraun, Stubensandstein, schwach verwittert
14.90				

B 3 (2"-Pegel)

420 98 m NHN UG TG = 421,3

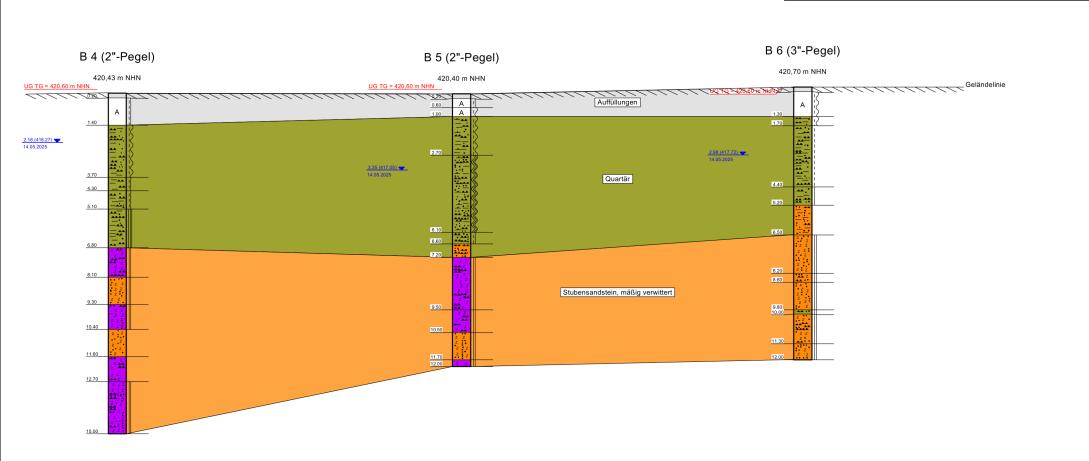
1.73 (419.25) **1**4.05.2025

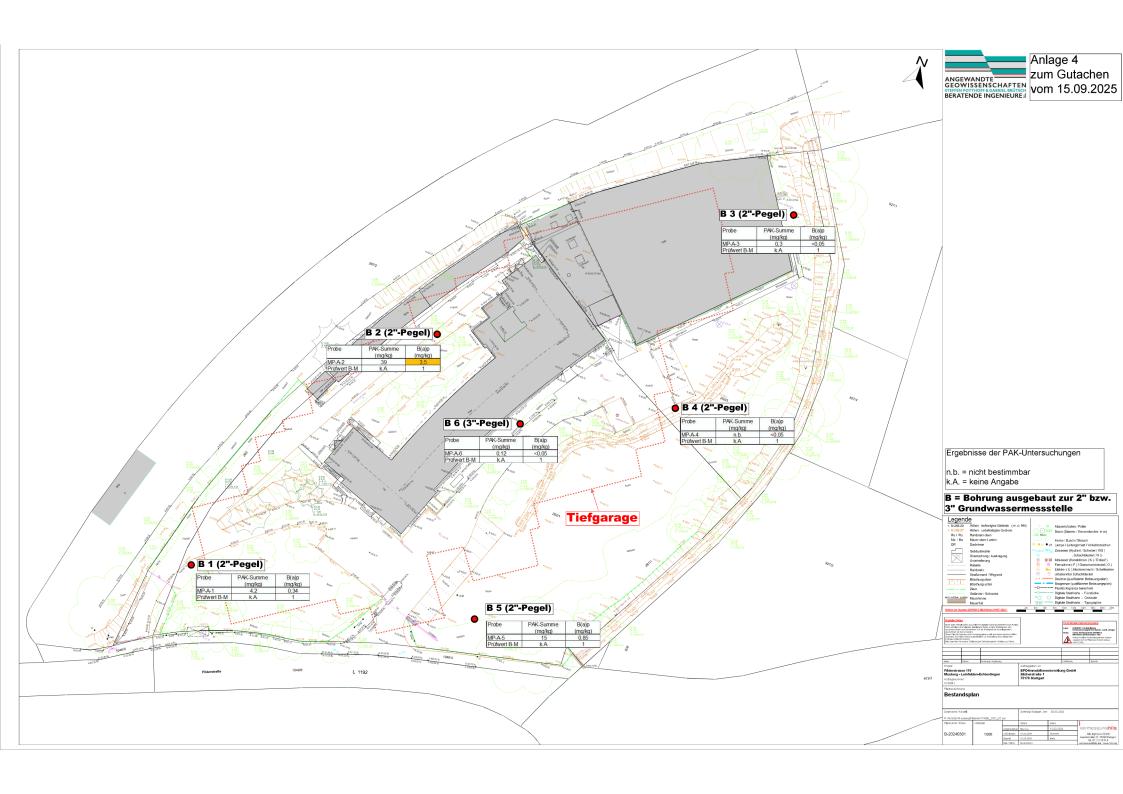
34 m NF	420,	98 m	NHN
_	0.20		Schluff, tonig, humos, Wurzeln, braun, Oberboden
		Α	Schluff, stark tonig, kiesig, Kalksteinstücke, Ziegelreste, steif,
	0.80 1.10	Α_	<u>du</u> nkelbraun - rotbraun, Auffüllung Split, grau, Auffüllung
	1.10	Α	Schluff, tonig, kiesig, schwach sandig, Kalksteinstücke, steif,
	1.90	H	braun, Auffüllung
	2.60	— :. •••:	Schluff, stark tonig, schwach feinsandig, schwach organisch, weich - steif, braun - dunkelbraun, Auelehm
	2.90		Schluff, tonig, feinsandig, weich, braun - rotbraun, Auelehm
	4.00	_ _	Schluff, tonig, schwach feinsandig, weich - steif, braun - rotbraun,
		=	Open di estado e abbuer filia e abbuerab tanàna est baser a Filia Canda
	5.10	<u> </u>	Sand, stark schluffig, schwach tonig, rotbraun, Fließerde
	5.10	***	Ochle fferenda to institute of Conductoria division and the fferenda to the first
		===	Schluffsandsteinstücke, Sandsteinstücke, schluffig, schwach tonig, fest, rotbraun - rotgrau, Fließerde
	6.20	ZZ	
		Z Z Z	
		z z	
		2 Z Z Z	Schluffsandstein, Sandstein, fest - hart, rotbraun - rotgrau, Stubensandstein, mäßig verwittert
		Z Z	The state of the s
		z z	
	9.10	Z	
		Z Z	
		2 2 2	
		z z	Schluffsandstein, fest, rotbraun - hellgrau, Stubensandstein, mäßig verwittert
		ZZ	
		z z z	
	12.10	, Z	
		z z	
		z z	Sandstein, hart, hellgrau, Stubensandstein, schwach verwittert
	14.00	z z	
	11.00		


Projekt: Leinfelden-Echterdingen, Musberg Altlasten (DU) Filderstraße 119 Anlage 2.2 zum Gutachten vom 15.09.2025

B 4 (2"-Pegel)

-Pegel) B 5 (2"-Pegel) m NHN 420,40 m NHN


gel) B 6 (3"-Pegel)


							420,70 m ľ	NHN
	420,43 m N	IHN		420,40 m	n NHN			
UG TG = 420,60 m	NHN		UG TG = 420,60 m I	NHN				
		Schluff, tonia, humos, Wurzeln, dunkelbraun, Oberboden	_		Oaklaff tasks however Warreds at 25 dead allower Observation	UG TG = 420,60 m N	<u> </u>	Schluff, tonig, humos, Wurzeln, Grasnarbe, steif, dunkelbraun,
	0.20	Schluff, tonig, numos, wurzein, dunkeibraun, Oberboden		0.20 A	Schluff, tonig, humos, Wurzeln, steif, dunkelbraun, Oberboden		0.20	N <u>Ob</u> erboden
		Schluff, tonig, sandig, Kalksteinstücke, Ziegelreste, Tonsteinstücke,		1	Schluff, tonig, Schlacke, Betonreste, Ziegelreste, Sandsteinstücke,		^	Schluff, tonig, stark sandig, Ziegelreste, Sandsteinstücke, Kalksteinstücke,
	1 ^ i	steif - halbfest, braungrau, Auffüllung		0.60	Plastik, steif - halbfest, braun, Auffüllung		1.30	Betonreste, weich - steif, braungrau, Auffüllung
	1.40	1 stem managed production and stem stem stem stem stem stem stem stem		/ =-	Schluff, tonig, stark sandig, Plastik, Alufolie, weich - steif,		**:	Schluff, tonig, stark sandig, schwach kiesig, organisch, Kalksteinstücke,
	≐ · I	(1.00	braun, Auffüllung		1.70	Sandsteinstücke, weich - steif, rotbraun - braun, Auelehm
2.16 (418.27)	****	i(Schluff, tonig, stark sandig, organisch, Sandsteinstücke, weich		***	i
14.05.2025	aa .	Schluff, tonig, schwach feinsandig, weich - steif, braun, Auelehm			- steif, braun, Auelehm	2.98 (417.72)	** **	1
	_ 	Schlan, tonig, schwach leinsahaig, welch - stell, braun, Adelenin		2.70	Story, Brading Madridinin	14.05.2025	**	Schluff, tonig, stark sandig, Sandsteinstücke, steif, rotbraun,
	:		3.35 (417.05)	*		14.00.2020	***	Fließerde
	3.70		14.05.2025	— :			<u>-=</u>	I Illiastrate
		Schluff, tonia, Sandsteinstücke, steif - halbfest, braun, Fließerde	14.00.2020					!
	4.30	Schluff, tonig, Sandsteinstücke, steir - halbfest, braun, Flielserde			Schluff, schwach tonig, stark sandig, organisch, breiig - weich		4.40	
	:-	Schluff, schwach tonig, stark sandig, steif - halbfest, braun,		- T	stell, schwach tong, stark sandig, organisch, breilg - welch		***	Schluff, tonig, stark sandig, Sandsteinstücke, halbfest, rotbraun,
	5.10	Fließerde		-	- Stell, Totbrauli, Fileiserde		5.20	Fließerde
	3.10	1 110000100		_	*)		7	
							***	Sand, stark schluffig, tonig, Sandsteinstücke, beigebraun, Fließerde
	_ -	Schluff, tonig, sandig, halbfest - fest, braun - rotbraun, Fließerde		6.10	-		•; —	,,, <u>-</u>
	=	a something, canaly, national took at a something to the		0.10	Schluff, schwach tonig, stark sandig, Sandsteinstücke, steif		6.50	11
	6.80			6.60	- halbfest, rotbraun, Fließerde		Z Z	
	Z			6.60	Sand, stark schluffig, schwach tonig, geschichtet, beigebraun,		, z	Sandstein, fest, ockerbeige - grau, gelbocker, hellgrau, Stubensandstein,
	Z 44	Schluffsandstein, fest, braun - rotbraun, Stubensandstein, mäßig		7.00			zz	mäßig verwittert
	z z	verwittert		7.20 Fließerde				
	8.10			Z -0.4			8.20 Z Z	On datain and the first last of the second state
	z z	Sandstein, fest - hart, grüngrau, Stubensandstein, mäßig verwittert		Z	[Z 44]	tert <u>8.60</u> Z		Sandstein, schwach schluffig, lagig, fest, rotbraun, Stubensandstein,
	z z			z z	Schluffsandstein, fest, rotbraun, Stubensandstein, mäßig verwittert			<u>mä</u> ßig verwittert
	0.20 Z Z			Z				Sandstein, lagig, fest, hellgrau, Stubensandstein, mäßig verwittert
	9.30			9.50 Z			9.80 Z Z	and the state of t
	• Z Z	Schluffsandstein - Sandstein, Wechsellagerung, fest - hart, rotbraun		Z 2	Schluffsandstein, zerbohrt, sandige Lagen, fest, rotbraun, Stubensar		7.44	Schluff, schwach tonig, stark sandig, Sandsteinstücke, fest,
	Z Z	- grüngrau, Stubensandstein, mäßig verwittert		-AZ	Schluffsandstein, Zerbonrt, sandige Lagen, fest, rotbraun, Stubensar mäßig verwittert	nastein,	10.00 Z Z	rotbraun - grau, Stubensandstein, mäßig verwittert
	10.40 Z Z			10.50	maisig verwittert		z	Sandstein, schwach schluffig, lagig, fest, hellgrau, gelbbraun,
	2.5			Z Z			11.30 Z z	Stubensandstein, mäßig verwittert
	Z • Z	Sandstein, zerbohrt, hart, hellgrau, Stubensandstein, mäßig verwittert	t	• · · · · · · · · · · · · · · · · · · ·	Sandstein, zerbohrt, fest, beigegelb, Stubensandstein, mäßig		7 Z	Sandstein, zerbohrt, stückig, fest - hart, gelbbraun, Stubensandstein.
	11.60 Z			11.70 Z	verwittert		12.00 z z	mäßig verwittert
	Z Z			11.70 Z	Schluffsandstein, Sandstein, zerbohrt, fest - hart, rotbraun,		12.00	II IIIaisig verwittert
	Z **	Schluffsandstein, hart, rotbraun, Stubensandstein, mäßig verwittert		12.00	Stubensandstein, mäßig verwittert			
	12.70 Z Z			12.00				
	Z Z							
	2 Z							
	z z	Schluffsandstein - Sandstein, Wechsellagerung, fest - hart, rotbraun						
	≈ z.	- hellgrau, Stubensandstein, mäßig verwittert						
	z z	- heligiau, Stubensanustein, maisig verwittert						

Projekt: Leinfelden-Echterdingen, Musberg Altlasten (DU) Filderstraße 119 Anlage 3.2 zum Gutachten vom 15.09.2025

Projekt:

Altlasten (DU), Filderstraße 119, Leinfelden-Echterdingen, Musberg

Fotodokumenation der Bohrung B 1

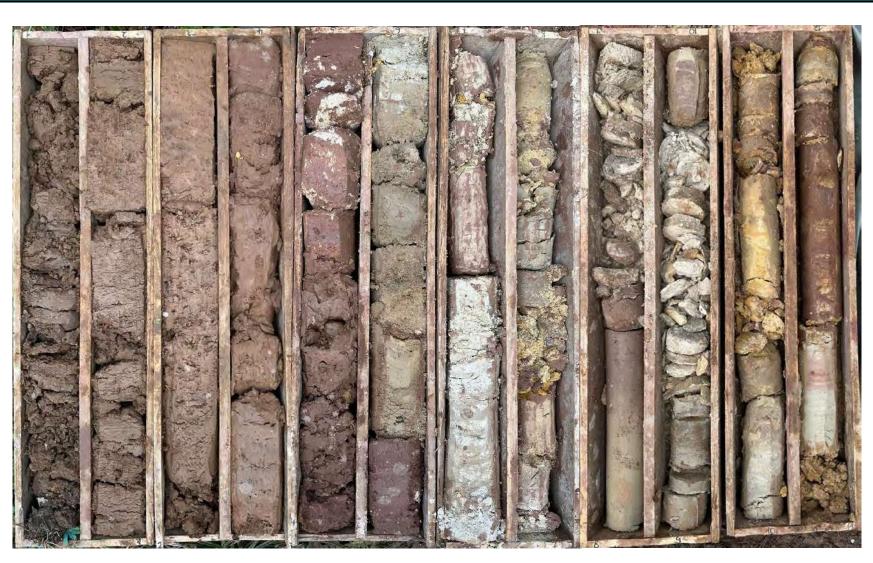
Projekt:

Altlasten (DU), Filderstraße 119, Leinfelden-Echterdingen, Musberg

Fotodokumenation der Bohrung B 2

Altlasten (DU), Filderstraße 119, Leinfelden-Echterdingen, Musberg

Altlasten (DU), Filderstraße 119, Leinfelden-Echterdingen, Musberg



Altlasten (DU), Filderstraße 119, Leinfelden-Echterdingen, Musberg

Altlasten (DU), Filderstraße 119, Leinfelden-Echterdingen, Musberg

Anlage 7 zum Gutachten vom 15.09.2025

Prüfberichte

von AGROLAB Labor GmbH, Bruckberg

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH Bruckberg, Dr.-Pauling-Str. 3, 84079 Bruckberg

Angewandte Geowissenschaften Steffen Potthoff & Gabriel Brütsch Herr Steffen Potthoff Nauklerstraße 37A 72074 Tübingen Kundennr.: 27067026

PRÜFBERICHT 3689807 Musberg, BV Filderstraße 119 - Auffüllung - PAK

Datum: 02.05.2025

Auftrag 3689807 Feststoff-/Eluat

Auftraggeber 27067026 Angewandte Geowissenschaften Steffen

Potthoff & Gabriel Brütsch

ProbenahmedatumKeine AngabeProbeneingang28.04.2025ProbenehmerAuftraggeber

Sehr geehrte Damen und Herren,

anbei übersenden wir Ihnen die Ergebnisse der Untersuchungen, mit denen Sie unser Labor beauftragt haben.

Dieser Prüfbericht mit der Auftragsnummer 3689807 und der Prüfberichtsversion 1 enthält die Probenummer(n) 143841-143846.

Mit freundlichen Grüßen

AGROLAB Labor GmbH Bruckberg, Philipp Schaffler, Tel. 0876593996-600

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

PRÜFBERICHT 3689807 Musberg, BV Filderstraße 119 - Auffüllung - PAK

Datum: 02.05.2025

Proben Informationen

Probenummer	Probenbezeichnung	Probenahmedatum	Probenehmer
143841	MP-A-B1	Keine Angabe	Auftraggeber
143842	MP-A-B2	Keine Angabe	Auftraggeber
143843	MP-A-B3	Keine Angabe	Auftraggeber

Feststoff

Parameter	Einheit	143841 MP-A-B1	143842 MP-A-B2	143843 MP-A-B3	Substanz
Analyse in der Gesamtfraktion		++2)	++2)	++2)	TS
Trockensubstanz	%	86,9 ¹⁾	88,61)	84,71)	OS
Naphthalin	mg/kg	<0,054)	0,10	<0,054)	TS
Acenaphthylen	mg/kg	<0,054)	0,32	<0,054)	TS
Acenaphthen	mg/kg	<0,054)	0,12	<0,054)	TS
Fluoren	mg/kg	<0,054)	0,19	<0,054)	TS
Phenanthren	mg/kg	0,31	2,4	<0,054)	TS
Anthracen	mg/kg	0,09	0,98	<0,054)	TS
Fluoranthen	mg/kg	0,79	6,1 ⁵⁾	0,10	TS
Pyren	mg/kg	0,57	5,4	0,08	TS
Benzo(a)anthracen	mg/kg	0,31	3,7	<0,054)	TS
Chrysen	mg/kg	0,44	3,9	0,05	TS
Benzo(b)fluoranthen	mg/kg	0,52	5,1 ⁵⁾	0,07	TS
Benzo(k)fluoranthen	mg/kg	0,29	2,2	<0,054)	TS
Benzo(a)pyren	mg/kg	0,34	3,5	<0,054)	TS
Dibenz(ah)anthracen	mg/kg	0,07	0,77	<0,054)	TS
Benzo(ghi)perylen	mg/kg	0,23	2,3	<0,054)	TS
Indeno(1,2,3-cd)pyren	mg/kg	0,21	2,2	<0,054)	TS
PAK-Summe (nach EPA)	mg/kg	4,23)	39	0,30 ³⁾	TS

Proben Informationen

Probenummer	Probenbezeichnung	Probenahmedatum	Probenehmer
143844	MP-A-B4	Keine Angabe	Auftraggeber
143845	MP-A-B5	Keine Angabe	Auftraggeber
143846	MP-A-B6	Keine Angabe	Auftraggeber

Feststoff

resision					
Parameter	Einheit	143844 MP-A-B4	143845 MP-A-B5	143846 MP-A-B6	Substanz
Analyse in der Gesamtfraktion		++2)	++2)	++2)	TS
Trockensubstanz	%	89,81)	84,71)	85,4 ¹⁾	OS
Naphthalin	mg/kg	<0,054)	<0,054)	<0,054)	TS
Acenaphthylen	mg/kg	<0,054)	0,33	<0,054)	TS
Acenaphthen	mg/kg	<0,054)	<0,054)	<0,054)	TS
Fluoren	mg/kg	<0,054)	0,13	<0,054)	TS
Phenanthren	mg/kg	<0,054)	1,3	<0,054)	TS
Anthracen	mg/kg	<0,054)	0,42	<0,054)	TS
Fluoranthen	mg/kg	<0,054)	3,2	0,07	TS
Pyren	mg/kg	<0,05 ⁴⁾	2,2	0,05	TS
Benzo(a)anthracen	mg/kg	<0,054)	1,1	<0,054)	TS
Chrysen	mg/kg	<0,054)	1,3	<0,054)	TS

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Seite 2 von 4

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

PRÜFBERICHT 3689807 Musberg, BV Filderstraße 119 - Auffüllung - PAK

Datum: 02.05.2025

Proben Informationen

Probenummer	Probenbezeichnung	Probenahmedatum	Probenehmer
143844	MP-A-B4	Keine Angabe	Auftraggeber
143845	MP-A-B5	Keine Angabe	Auftraggeber
143846	MP-A-B6	Keine Angabe	Auftraggeber

Parameter	Einheit	143844 MP-A-B4	143845 MP-A-B5	143846 MP-A-B6	Substanz
Benzo(b)fluoranthen	mg/kg	<0,054)	2,2	<0,054)	TS
Benzo(k)fluoranthen	mg/kg	<0,054)	0,80	<0,054)	TS
Benzo(a)pyren	mg/kg	<0,054)	0,85	<0,054)	TS
Dibenz(ah)anthracen	mg/kg	<0,054)	0,24	<0,054)	TS
Benzo(ghi)perylen	mg/kg	<0,054)	0,69	<0,054)	TS
Indeno(1,2,3-cd)pyren	mg/kg	<0,054)	0,63	<0,054)	TS
PAK-Summe (nach EPA)	mg/kg	n.b. ⁴⁾	15 ³⁾	0,123)	TS

¹⁾ Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz (TS), bei den mit ¹⁾ gekennzeichneten Parametern auf die Originalsubstanz (OS).

Die Berechnung der Messunsicherheiten in der folgenden Tabelle basiert auf dem GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP und OIML, 2008) und dem Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Es handelt sich also um einen sehr zuverlässigen Wert mit einem Vertrauensniveau von 95% (Konfidenzintervall). Abweichungen hiervon sind als Eintrag in der Spalte "Abweichende Bestimmungsmethode" gekennzeichnet.

Messunsicherheit	Abweichende Bestimmungsmethode	Parameter
6%		Trockensubstanz
28%		Anthracen • Acenaphthylen • Acenaphthen • Fluoren
35%		Phenanthren • Fluoranthen • Pyren • Benzo(a)anthracen • Chrysen
75%		Naphthalin
31%		Benzo(b)fluoranthen • Benzo(k)fluoranthen • Benzo(a)pyren • Indeno(1,2,3-cd)pyren • Dibenz(ah)anthracen • Benzo(ghi) perylen

Beginn der Prüfung: 28.04.2025 Ende der Prüfung: 30.04.2025

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig.

Im Fall einer Konformitätsbewertung wird als Entscheidungsregel der diskrete Ansatz angewendet. Das bedeutet, dass die Messunsicherheit bei der Aussage zur Konformität zu einer Spezifikation oder Norm nicht berücksichtigt wird.

AGROLAB Labor GmbH Bruckberg, Philipp Schaffler, Tel. 0876593996-600

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Seite 3 von 4

^{2) &}quot;++" Bedeutet, dass die notwendige Behandlung im Labor durchgeführt wurde.

³⁾ Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.

⁴⁾ Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

⁵⁾ Die Nachweis-/Bestimmungsgrenze musste erhöht werden, da eine hohe Belastung einzelner Analyten eine Vermessung in der für die angegebenen Grenzen notwendigen unverdünnten Analyse nicht erlaubte.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

PRÜFBERICHT 3689807 Musberg, BV Filderstraße 119 - Auffüllung - PAK

Datum: 02.05.2025

Methodenliste

Berechnung aus Messwerten der Einzelparameter	PAK-Summe (nach EPA)
DIN 19747 : 2009-07	Analyse in der Gesamtfraktion
DIN EN 14346 : 2007-03, Verfahren A	Trockensubstanz
DIN ISO 18287 : 2006-05	Naphthalin • Acenaphthylen • Acenaphthen • Fluoren • Phenanthren • Anthracen • Fluoranthen • Pyren • Benzo(a)anthracen • Chrysen • Benzo(b)fluoranthen • Benzo(k)fluoranthen • Benzo(a)pyren • Dibenz(ah)anthracen • Benzo(ghi)perylen • Indeno(1,2,3-cd) pyren

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Angewandte Geowissenschaften Steffen Potthoff & Gabriel Brütsch Herr Steffen Potthoff Nauklerstraße 37A 72074 Tübingen

> Datum 06.05.2025 Kundennr. 27067026

PRÜFBERICHT

Auftrag 3689808 Musberg, BV Filderstraße 119, Bodenproben

Analysennr. 143865 Bodenmaterial/Baggergut

Probeneingang 28.04.2025 Probenahme Keine Angabe Probenehmer Auftraggeber

	Einheit	Ergebnis	BestGr.	Methode
Factoress	Limon	Ligobillo	D001. O1.	Motrodo
Feststoff				
Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
Masse Laborprobe	Kg	4,6	0,01	DIN 19747 : 2009-07
Trockensubstanz	%	89,2	0,1	DIN EN 15934 : 2012-
Wassergehalt	%	10,8		Berechnung aus dem Messy
Kohlenstoff, org., freisetzbar 400°C (TOC400)	%	0,8	0,1	DIN 19539: 2016-12
EOX	mg/kg	<0,30	0,3	DIN 38414-17 : 2017-
Königswasseraufschluß				DIN EN ISO 54321:20
Arsen (As)	mg/kg	6,8	0,8	DIN EN 16171 : 2017-
Blei (Pb)	mg/kg	21	2	DIN EN 16171 : 2017-
Cadmium (Cd)	mg/kg	0,15	0,13	DIN EN 16171 : 2017
Chrom (Cr)	mg/kg	21	1	DIN EN 16171 : 2017
Kupfer (Cu)	mg/kg	20	1	DIN EN 16171 : 2017
Nickel (Ni)	mg/kg	21	1	DIN EN 16171 : 2017
Quecksilber (Hg)	mg/kg	0,11	0,05	DIN EN ISO 12846 : 201
Thallium (TI)	mg/kg	0,2	0,1	DIN EN 16171 : 2017
Zink (Zn)	mg/kg	49	6	DIN EN 16171 : 2017
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + L KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	88	50	DIN EN 14039 : 2005-01 + L KW/04 : 2019-09
Naphthalin	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-
Acenaphthylen	mg/kg	0,090	0,05	DIN ISO 18287 : 2006-
Acenaphthen	mg/kg	0,053	0,05	DIN ISO 18287 : 2006-
Fluoren	mg/kg	0,056	0,05	DIN ISO 18287 : 2006-
Phenanthren	mg/kg	0,81	0,05	DIN ISO 18287 : 2006-
Anthracen	mg/kg	0,29	0,05	DIN ISO 18287 : 2006-
Fluoranthen	mg/kg	2,4	0,05	DIN ISO 18287 : 2006-
Pyren	mg/kg	1,8	0,05	DIN ISO 18287 : 2006-
Benzo(a)anthracen	mg/kg	1,1	0,05	DIN ISO 18287 : 2006-
Chrysen	mg/kg	1,4	0,05	DIN ISO 18287 : 2006-
Benzo(b)fluoranthen	mg/kg	2,4	0,05	DIN ISO 18287 : 2006-
Benzo(k)fluoranthen	mg/kg	1,1	0,05	DIN ISO 18287 : 2006-
Benzo(a)pyren	mg/kg	1,0	0,05	DIN ISO 18287 : 2006-
Dibenzo(ah)anthracen	mg/kg	0,33	0,05	DIN ISO 18287 : 2006-
Benzo(ghi)perylen	mg/kg	0,91	0,05	DIN ISO 18287 : 2006-0

Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Geschäftsführer Dr. Carlo C. Peich Dr. Paul Wimmer Dr. Torsten Zurmühl

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

Datum 06.05.2025 Kundennr. 27067026

PRÜFBERICHT

Auftrag **3689808** Musberg, BV Filderstraße 119, Bodenproben Analysennr. **143865** Bodenmaterial/Baggergut

Kunden-Probenbezeichnung	MF	9 5		
_	Einheit	Ergebnis	BestGr.	Methode
Indeno(1,2,3-cd)pyren	mg/kg	0,78	0,05	DIN ISO 18287 : 2006-05
PAK EPA Summe gem. ErsatzbaustoffV	mg/kg	15 #5)	1	Berechnung aus Messwerten der Einzelparameter
PAK EPA Summe gem. BBodSchV 2021	mg/kg	15 ×)	1	Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (28) PCB (52) PCB (101) PCB (118)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (101)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (118)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (138)	mg/kg	<0,0050 m)	0,005	DIN EN 17322 : 2021-03
PCB (153)	mg/kg	<0,0050 m)	0,005	DIN EN 17322 : 2021-03
PCB (180)	mg/kg	<0,0050 m)	0,005	DIN EN 17322 : 2021-03
PCB 7 Summe gem. ErsatzbaustoffV	mg/kg	<0,010 #5)	0,01	Berechnung aus Messwerten der Einzelparameter
PCB 7 Summe gem. BBodSchV 2021	mg/kg	<0,010 x)	0,01	Berechnung aus Messwerten der Einzelparameter
Eluat				
Eluatanalyse in der Fraktion <32				DIN 19529 : 2015-12
Fraktion < 32 mm	%	° 100	0,1	DIN 19747 : 2009-07
PCB (138) PCB (153) PCB (180) PCB 7 Summe gem. ErsatzbaustoffV PCB 7 Summe gem. BBodSchV 2021 Eluat Eluatanalyse in der Fraktion <32 mm Fraktion < 32 mm Fraktion > 32 mm	%	° <0,1	0,1	Berechnung aus dem Messwert

Eluat	,			·
Eluat Eluatanalyse in der Fraktion <32 mm Fraktion < 32 mm Fraktion > 32 mm Eluat (DIN 19529) Temperatur Eluat pH-Wert elektrische Leitfähigkeit Sulfat (SO4) Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) Trübung nach GF-Filtration PCB (28) PCB (138) PCB (118) PCB (138) PCB (153) PCB (180) PCB 7 Summe gem. ErsatzbaustoffV PCB 7 Summe gem. BBodSchV 2021 Naphthalin 1-Methylnaphthalin 2-Methylnaphthalin 2-Methylnaphthalin				DIN 19529 : 2015-12
Fraktion < 32 mm	%	° 100	0,1	DIN 19747 : 2009-07
Fraktion > 32 mm	%	° <0,1	0,1	Berechnung aus dem Messwert
ୁଞ୍ଚ Eluat (DIN 19529)		۰		DIN 19529 : 2015-12
ਵੋਂ Temperatur Eluat	°C	22,0	0	DIN 38404-4 : 1976-12
pH-Wert		8,5	0	DIN EN ISO 10523 : 2012-04
ਵੱ elektrische Leitfähigkeit	μS/cm	189	10	DIN EN 27888 : 1993-11
জু Sulfat (SO4)	mg/l	10	2	DIN EN ISO 10304-1 : 2009-07
Arsen (As)	μg/l	<2,5	2,5	DIN EN ISO 17294-2 : 2017-01
ଞ୍ଚି Blei (Pb)	μg/l	<1	1	DIN EN ISO 17294-2 : 2017-01
불 Cadmium (Cd)	μg/l	<0,25	0,25	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	µg/l	1,1	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	µg/l	<5	5	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	µg/l	<0,025	0,025	DIN EN ISO 12846 : 2012-08
Thallium (TI)	μg/l	<0,06	0,06	DIN EN ISO 17294-2 : 2017-01
$\frac{\omega}{Z}$ Zink (Zn)	μg/l	<30	30	DIN EN ISO 17294-2 : 2017-01
Trübung nach GF-Filtration	NTU	6,2	0,1	DIN EN ISO 7027 : 2000-04
PCB (28)	µg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (52)	µg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
စ္တီ PCB (101)	μg/l	<0,0020 wf)	0,002	DIN 38407-37 : 2013-11
^ਛ ੁ PCB (118)	μg/l	<0,0020 wf)	0,002	DIN 38407-37 : 2013-11
PCB (138)	µg/l	<0,0020 wf)	0,002	DIN 38407-37 : 2013-11
퉁 PCB (153)	µg/l	<0,0020 wf)	0,002	DIN 38407-37 : 2013-11
€ PCB (180)	µg/l	<0,0020 wf)	0,002	DIN 38407-37 : 2013-11
PCB 7 Summe gem. ErsatzbaustoffV	μg/l	0,0050 #5)	0,003	Berechnung aus Messwerten der Einzelparameter
PCB 7 Summe gem. BBodSchV 2021	µg/l	<0,0030 ×)	0,003	Berechnung aus Messwerten der Einzelparameter
Naphthalin	μg/l	0,014	0,01	DIN 38407-39 : 2011-09
1-Methylnaphthalin	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
2-Methylnaphthalin	μg/l	<0,010 m)	0,01	DIN 38407-39 : 2011-09

DAKS
Deutsche
Aktreditierungsstelle
DP-14289-01-00

Seite 2 von 4

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.05.2025 Kundennr. 27067026

PRÜFBERICHT

3689808 Musberg, BV Filderstraße 119, Bodenproben Auftrag 143865 Bodenmaterial/Baggergut Analysennr.

Kunden-Probenbezeichnung MP 5

	Einheit	Ergebnis	BestGr.	Methode
Acenaphthylen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Acenaphthen	µg/l	<0,020 m)	0,02	DIN 38407-39 : 2011-09
Fluoren	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Phenanthren	μg/l	0,027	0,01	DIN 38407-39 : 2011-09
Anthracen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Anthracen Fluoranthen Pyren Benzo(a)anthracen	μg/l	0,020	0,01	DIN 38407-39 : 2011-09
Pyren	μg/l	0,014	0,01	DIN 38407-39 : 2011-09
Benzo(a)anthracen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Chrysen	μg/l	<0,010 m)	0,01	DIN 38407-39 : 2011-09
	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen Benzo(k)fluoranthen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Dibenzo(ah)anthracen Benzo(ghi)perylen Indeno(1,2,3-cd)pyren	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(ghi)perylen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Naphthalin/MethylnaphSumme gem. ErsatzbaustoffV PAK 15 Summe gem.	μg/l	<0,050 #5)	0,05	Berechnung aus Messwerten der Einzelparameter
	µg/l	0,086 #5)	0,05	Berechnung aus Messwerten der Einzelparameter
ErsatzbaustoffV Naphthalin/MethylnaphSumme gem. BBodSchV 2021 PAK 15 Summe gem. BBodSchV	μg/l	<0,050 x)	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. BBodSchV 2021	µg/l	0,061 ×)	0,05	Berechnung aus Messwerten der Einzelparameter

Abweichende Bestimmungsmethode

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.
#5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.
m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixeffekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.
wf) Die Wiederfindung eines oder mehrerer internen Standards liegen bei vorliegender Probe bei <50%, jedoch >10%. Es ist somit eine erhöhte Messunsicherheit zu erwarten.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Parameter wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Die Berechnung der Messunsicherheiten in der folgenden Tabelle basiert auf dem GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP und OIML, 2008) und dem Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Es handelt sich also um einen sehr zuverlässigen Wert mit einem Vertrauensniveau von 95% (Konfidenzintervall). Abweichungen hiervon sind als Eintrag in der Spalte "Abweichende Bestimmungsmethode" gekennzeichnet.

Parameter

	3
60%	Acenaphthen, Acenaphthylen
30%	Anthracen, Quecksilber (Hg), Phenanthren [mg/kg], Nickel
	(Ni),Fluoranthen[mg/kg],Benzo(a)pyren,Benzo(a)anthracen
20%	Arsen (As),Thallium (TI),Temperatur Eluat,Sulfat (SO4)
45%	Benzo(b)fluoranthen,Pyren[mg/kg],Fluoren,Benzo(k)fluoranthen
50%	Benzo(ghi)perylen,Indeno(1,2,3-cd)pyren,Dibenzo(ah)anthracen
28%	Blei (Pb)
22%	Cadmium (Cd)
25%	Chrom (Cr)[µg/l],Zink (Zn),Chrom (Cr)[mg/kg]
40%	Chrysen
10%	elektrische Leitfähigkeit
35%	Fluoranthen[µg/l],Pyren[µg/l],Phenanthren[µg/l],Naphthalin,Kohlenwasser
	Seite 3 von 4

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Messunsicherheit

Geschäftsführer Dr. Carlo C. Peich Dr. Paul Wimmer Dr. Torsten Zurmü

17025:2018 akkreditiert.

DIN EN ISO/IEC

Die in diesem Dokument berichteten Verfahren sind

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.05.2025 Kundennr. 27067026

PRÜFBERICHT

Symbol

mit dem

Jicht

akkreditiert

17025:2018

DIN EN ISO/IEC

Die in diesem Dokument berichteten Verfahren sind

Auftrag 3689808 Musberg, BV Filderstraße 119, Bodenproben

Analysennr. **143865** Bodenmaterial/Baggergut

Kunden-Probenbezeichnung MP 5

stoffe C10-C40

25% Estimation Kohlenstoff, org., freisetzbar 400°C (TOC400)

27% Kupfer (Cu) 5% Estimation Masse Laborprobe

5,83% pH-Wert 6% Trockensubstanz

Bei der Messung nach DIN EN 15934: 2012-11 wurde Verfahren A verwendet.

Bei der Messung nach DIN 19539 : 2016-12 wurde das Verfahren nach Kapitel 8.5 verwendet.

Für die Messung nach DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09 wurde das Probenmaterial mittels Schütteln extrahiert und über eine Florisilsäule aufgereinigt.

Für die Messung nach DIN EN 17322 : 2021-03 wurde mittels Schütteln extrahiert und über mit Schwefelsäure aktiviertem Silicagel aufgereinigt. Die Detektion erfolgte mittels MS.

Für die Eluaterstellung wurden je Ansatz 350 g Trockenmasse +/- 5g mit 700 ml deionisiertem Wasser versetzt und über einen Zeitraum von 24h bei 5 Umdrehungen pro Minute im Überkopfschüttler eluiert. Bei Bedarf werden mehrere Ansätze parallel eluiert. Die Fest-/Flüssigphasentrennung erfolgte für hydrophile Stoffe gemäß Zentrifugation/Membranfiltration, für hydrophobe Stoffe gemäß Zentrifugation/Glasfaserfiltration.

Für die Messung nach DIN EN 38404-4 : 1976-12 wurde das erstellte Eluat/Perkolat nicht stabilisiert.

Für die Messung nach DIN EN ISO 10523 : 2012-04 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Für die Messung nach DIN EN 27888 : 1993-11 wurde das erstellte Eluat/Perkolat bis zur Messung im Dunkeln gekühlt aufbewahrt. Für die Messung nach DIN EN ISO 10304-1 : 2009-07 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Für die Messung nach DIN EN ISO 17294-2 : 2017-01 wurde das erstellte Eluat/Perkolat mittels konzentrierter Salpetersäure stabilisiert.

Für die Messung nach DIN EN ISO 12846 : 2012-08 wurde das erstellte Eluat/Perkolat mittels 30%iger Salzsäure stabilisiert.

Für die Messung nach DIN EN ISO 7027 : 2000-04 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Für die Messung nach DIN 38407-37 : 2013-11 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt. Für die Messung nach DIN 38407-39 : 2011-09 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Beginn der Prüfungen: 28.04.2025 Ende der Prüfungen: 06.05.2025

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig.

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Seite 4 von 4

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Angewandte Geowissenschaften Steffen Potthoff & Gabriel Brütsch Herr Steffen Potthoff Nauklerstraße 37A 72074 Tübingen

> Datum 06.05.2025 Kundennr. 27067026

> > Methode

PRÜFBERICHT

Auftrag **3689808** Musberg, BV Filderstraße 119, Bodenproben

Analysennr. 143866 Bodenmaterial/Baggergut

Probeneingang 28.04.2025
Probenahme Keine Angabe
Probenehmer Auftraggeber

Kunden-Probenbezeichnung MP 6
Einheit

Feststoff				
Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
Masse Laborprobe	kg	° 4,0	0,01	DIN 19747 : 2009-07
Trockensubstanz	%	° 85,1	0,1	DIN EN 15934 : 2012-11
Wassergehalt	%	° 14,9		Berechnung aus dem Messwert
Kohlenstoff, org., freisetzbar 400°C (TOC400)	%	0,4	0,1	DIN 19539: 2016-12
EOX	mg/kg	<0,30	0,3	DIN 38414-17 : 2017-01
Königswasseraufschluß				DIN EN ISO 54321:2021
Arsen (As)	mg/kg	8,3	0,8	DIN EN 16171 : 2017-01
Blei (Pb)	mg/kg	23	2	DIN EN 16171 : 2017-01
Cadmium (Cd)	mg/kg	0,15	0,13	DIN EN 16171 : 2017-01
Chrom (Cr)	mg/kg	22	1	DIN EN 16171 : 2017-01
Kupfer (Cu)	mg/kg	18	1	DIN EN 16171 : 2017-01
Nickel (Ni)	mg/kg	23	1	DIN EN 16171 : 2017-01
Quecksilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/kg	0,1	0,1	DIN EN 16171 : 2017-01
Zink (Zn)	mg/kg	60	6	DIN EN 16171 : 2017-01
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphthalin	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	0,10	0,05	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	0,38	0,05	DIN ISO 18287 : 2006-05
Anthracen	mg/kg	0,13	0,05	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	0,88	0,05	DIN ISO 18287 : 2006-05
Pyren	mg/kg	0,61	0,05	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	0,31	0,05	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	0,38	0,05	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	0,64	0,05	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	0,26	0,05	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	0,32	0,05	DIN ISO 18287 : 2006-05
Dibenzo(ah)anthracen	mg/kg	0,069	0,05	DIN ISO 18287 : 2006-05
Benzo(ghi)perylen	mg/kg	0,22	0,05	DIN ISO 18287 : 2006-05

Ergebnis

Best.-Gr.

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-14289-01-00

Seite 1 von 4

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

Datum 06.05.2025 Kundennr. 27067026

Methode

PRÜFBERICHT

Auftrag 3689808 Musberg, BV Filderstraße 119, Bodenproben Analysennr. 143866 Bodenmaterial/Baggergut

Einheit

Kunden-Probenbezeichnung MP 6

Indeno(1,2,3-cd)pyren	mg/kg	0,19	0,05	DIN ISO 18287 : 2006-05
PAK EPA Summe gem. ErsatzbaustoffV	mg/kg	4,5 #5)	1	Berechnung aus Messwerten de Einzelparameter
PAK EPA Summe gem. BBodSchV 2021	mg/kg	4,5 ×)	1	Berechnung aus Messwerten de Einzelparameter
PCB (28)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (52)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (101)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (118)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-0
PCB (138)	mg/kg	<0,0050 m)	0,005	DIN EN 17322 : 2021-0
PCB (153)	mg/kg	<0,0050 m)	0,005	DIN EN 17322 : 2021-0
PCB (180)	mg/kg	<0,0050 m)	0,005	DIN EN 17322 : 2021-03
PCB 7 Summe gem. ErsatzbaustoffV	mg/kg	<0,010 #5)	0,01	Berechnung aus Messwerten d Einzelparameter
PCB 7 Summe gem. BBodSchV 2021	mg/kg	<0,010 ×)	0,01	Berechnung aus Messwerten d Einzelparameter
Eluat				
Eluatanalyse in der Fraktion <32 mm				DIN 19529 : 2015-12
Fraktion < 32 mm	%	° 100	0,1	DIN 19747 : 2009-07
Fraktion > 32 mm	%	° <0,1	0,1	Berechnung aus dem Messwe
Eluat (DIN 19529)		0		DIN 19529 : 2015-12
Temperatur Eluat	°C	21,8	0	DIN 38404-4 : 1976-12
pH-Wert		8,2	0	DIN EN ISO 10523 : 2012-0
elektrische Leitfähigkeit	μS/cm	199	10	DIN EN 27888 : 1993-1
Sulfat (SO4)	mg/l	2,9	2	DIN EN ISO 10304-1 : 2009-0
Arsen (As)	μg/l	<2,5	2,5	DIN EN ISO 17294-2 : 2017-0
Blei (Pb)	μg/l	<1	1	DIN EN ISO 17294-2 : 2017-0
Cadmium (Cd)	μg/l	<0,25	0,25	DIN EN ISO 17294-2 : 2017-0
Chrom (Cr)	μg/l	1,2	1	DIN EN ISO 17294-2 : 2017-0
Kupfer (Cu)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-0
Nickel (Ni)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-0
Quecksilber (Hg)	μg/l	<0,025	0,025	DIN EN ISO 12846 : 2012-0
Thallium (Tl)	μg/l	<0,06	0,06	DIN EN ISO 17294-2 : 2017-0
Zink (Zn)	μg/l	<30	30	DIN EN ISO 17294-2 : 2017-0
Trübung nach GF-Filtration	NTU	16	0,1	DIN EN ISO 7027 : 2000-0
PCB (28)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-1
PCB (52)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-1
PCB (101)	μg/l	<0,0010 (+)	0,001	DIN 38407-37 : 2013-1
PCB (118)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-1
PCB (138)	μg/l	<0,0010 (+)	0,001	DIN 38407-37 : 2013-1
PCB (153)	μg/l	<0,0010 (+)	0,001	DIN 38407-37 : 2013-1
PCB (180)	μg/l	<0,0010 (+)	0,001	DIN 38407-37 : 2013-1
PCB 7 Summe gem. ErsatzbaustoffV	μg/l	<0,0030 #5)	0,003	Berechnung aus Messwerten d Einzelparameter
PCB 7 Summe gem. BBodSchV 2021	μg/l	<0,0030 ×)	0,003	Berechnung aus Messwerten d Einzelparameter

0,026

<0,010 (+)

<0,010 (+)

0,01

0,01

0,01

Ergebnis

Best.-Gr.

(DAkkS Akkreditierungsstelle D-PL-14289-01-00

DIN 38407-39: 2011-09

DIN 38407-39: 2011-09

DIN 38407-39 : 2011-09

Seite 2 von 4

Naphthalin

1-Methylnaphthalin

2-Methylnaphthalin

μg/l

μg/l

μg/l

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.05.2025 Kundennr. 27067026

PRÜFBERICHT

3689808 Musberg, BV Filderstraße 119, Bodenproben Auftrag Analysennr. 143866 Bodenmaterial/Baggergut

Kunden-Probenbezeichnung MP 6

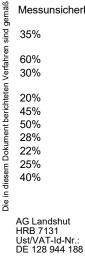
	Einheit	Ergebnis	BestGr.	Methode
Acenaphthylen	μg/l	<0,010 m)	0,01	DIN 38407-39 : 2011-09
Acenaphthen	µg/l	0,012	0,01	DIN 38407-39 : 2011-09
Fluoren	μg/l	0,013	0,01	DIN 38407-39 : 2011-09
Phenanthren	μg/l	0,030	0,01	DIN 38407-39 : 2011-09
ਰੂਂ Anthracen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Anthracen Fluoranthen Pyren Benzo(a)anthracen	μg/l	0,021	0,01	DIN 38407-39 : 2011-09
Pyren	μg/l	0,015	0,01	DIN 38407-39 : 2011-09
🖁 Benzo(a)anthracen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
ិ្ត Benzo(k)fluoranthen	μg/l	<0,010 ^{m)}	0,01	DIN 38407-39 : 2011-09
Benzo(a)pyren	μg/l	<0,010 ^{m)}	0,01	DIN 38407-39 : 2011-09
្ទី Dibenzo(ah)anthracen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(ghi)perylen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
ର୍ଚ୍ଚି Indeno(1,2,3-cd)pyren	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Chrysen Benzo(b)fluoranthen Benzo(a)pyren Dibenzo(ah)anthracen Benzo(ghi)perylen Indeno(1,2,3-cd)pyren Naphthalin/MethylnaphSumme gem. ErsatzbaustoffV PAK 15 Summe gem.	μg/l	<0,050 #5)	0,05	Berechnung aus Messwerten der Einzelparameter
	μg/l	0,14 #5)	0,05	Berechnung aus Messwerten der Einzelparameter
Naphthalin/MethylnaphSumme gem. BBodSchV 2021	µg/l	<0,050 ×)	0,05	Berechnung aus Messwerten der Einzelparameter
ErsatzbaustoffV Naphthalin/MethylnaphSumme gem. BBodSchV 2021 PAK 15 Summe gem. BBodSchV 2021	µg/l	0,091 ×)	0,05	Berechnung aus Messwerten der Einzelparameter

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.
#5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.
m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixeffekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender

Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze


Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Parameter wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Die Berechnung der Messunsicherheiten in der folgenden Tabelle basiert auf dem GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP und OIML, 2008) und dem Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Es handelt sich also um einen sehr zuverlässigen Wert mit einem Vertrauensniveau von 95% (Konfidenzintervall). Abweichungen hiervon sind als Eintrag in der Spalte "Abweichende Bestimmungsmethode" gekennzeichnet.

Messunsicherneit	Abweichende Bestimmungsmethode	Parameter
35%		Acenaphthen,Pyren[µg/l],Phenanthren[µg/l],Naphthalin,Fluoren,Fluoranthen[µg/l]
60%		Acenaphthylen
30%		Anthracen,Phenanthren[mg/kg],Nickel
		(Ni),Fluoranthen[mg/kg],Benzo(a)pyren,Benzo(a)anthracen
20%		Arsen (As),Thallium (TI),Temperatur Eluat,Sulfat (SO4)
45%		Benzo(b)fluoranthen,Pyren[mg/kg],Benzo(k)fluoranthen
50%		Benzo(ghi)perylen,Indeno(1,2,3-cd)pyren,Dibenzo(ah)anthracen
28%		Blei (Pb)
22%		Cadmium (Cd)
25%		Chrom (Cr)[µg/l],Zink (Zn),Chrom (Cr)[mg/kg]
40%		Chrysen

Seite 3 von 4

Geschäftsführer Dr. Carlo C. Peich Dr. Paul Wimmer Dr. Torsten Zurmühl

DIN EN ISO/IEC

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.05.2025 Kundennr. 27067026

PRÜFBERICHT

Symbol

mit dem

Jicht

akkreditiert

17025:2018

DIN EN ISO/IEC

Auftrag **3689808** Musberg, BV Filderstraße 119, Bodenproben Analysennr. **143866** Bodenmaterial/Baggergut

Kunden-Probenbezeichnung MP 6

10% elektrische Leitfähigkeit

25% Estimation Kohlenstoff, org., freisetzbar 400°C (TOC400)

27% Kupfer (Cu) 5% Estimation Masse Laborprobe

5,83% pH-Wert 6% Trockensubstanz

Bei der Messung nach DIN EN 15934 : 2012-11 wurde Verfahren A verwendet.

Bei der Messung nach DIN 19539 : 2016-12 wurde das Verfahren nach Kapitel 8.5 verwendet.

Für die Messung nach DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09 wurde das Probenmaterial mittels Schütteln extrahiert und über eine Florisilsäule aufgereinigt.

Für die Messung nach DIN EN 17322 : 2021-03 wurde mittels Schütteln extrahiert und über mit Schwefelsäure aktiviertem Silicagel aufgereinigt. Die Detektion erfolgte mittels MS.

Für die Eluaterstellung wurden je Ansatz 350 g Trockenmasse +/- 5g mit 700 ml deionisiertem Wasser versetzt und über einen Zeitraum von 24h bei 5 Umdrehungen pro Minute im Überkopfschüttler eluiert. Bei Bedarf werden mehrere Ansätze parallel eluiert. Die Fest-/Flüssigphasentrennung erfolgte für hydrophile Stoffe gemäß Zentrifugation/Membranfiltration, für hydrophobe Stoffe gemäß Zentrifugation/Glasfaserfiltration.

Für die Messung nach DIN EN 38404-4 : 1976-12 wurde das erstellte Eluat/Perkolat nicht stabilisiert.

Für die Messung nach DIN EN ISO 10523 : 2012-04 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Für die Messung nach DIN EN 27888 : 1993-11 wurde das erstellte Eluat/Perkolat bis zur Messung im Dunkeln gekühlt aufbewahrt. Für die Messung nach DIN EN ISO 10304-1 : 2009-07 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Für die Messung nach DIN EN ISO 17294-2 : 2017-01 wurde das erstellte Eluat/Perkolat mittels konzentrierter Salpetersäure stabilisiert.

Für die Messung nach DIN EN ISO 12846 : 2012-08 wurde das erstellte Eluat/Perkolat mittels 30%iger Salzsäure stabilisiert.

Für die Messung nach DIN EN ISO 7027 : 2000-04 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Für die Messung nach DIN 38407-37 : 2013-11 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt. Für die Messung nach DIN 38407-39 : 2011-09 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Beginn der Prüfungen: 28.04.2025 Ende der Prüfungen: 05.05.2025

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig.

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Die in diesem Dokument berichteten Verfahren sind

Seite 4 von 4

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Angewandte Geowissenschaften Steffen Potthoff & Gabriel Brütsch Herr Steffen Potthoff Nauklerstraße 37A 72074 Tübingen

> Datum 06.05.2025 Kundennr. 27067026

> > Methode

PRÜFBERICHT

Auftrag **3689808** Musberg, BV Filderstraße 119, Bodenproben

Analysennr. 143867 Bodenmaterial/Baggergut

Probeneingang 28.04.2025
Probenahme Keine Angabe
Probenehmer Auftraggeber

Kunden-Probenbezeichnung MP 7
Einheit Ergebnis

3		=.9=25	200 0	
Feststoff				
Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
Masse Laborprobe Trockensubstanz	kg	° 4,9	0,01	DIN 19747 : 2009-07
Trockensubstanz	%	° 85,3	0,1	DIN EN 15934 : 2012-11
Wassergehalt	%	° 14,7		Berechnung aus dem Messwert
Vvassergenalt Kohlenstoff, org., freisetzbar 400°C (TOC400)	%	0,4	0,1	DIN 19539: 2016-12
EOX	mg/kg	<0,30	0,3	DIN 38414-17 : 2017-01
Königswasseraufschluß				DIN EN ISO 54321:2021
Arsen (As)	mg/kg	6,7	0,8	DIN EN 16171 : 2017-01
Blei (Pb)	mg/kg	23	2	DIN EN 16171 : 2017-01
Cadmium (Cd)	mg/kg	<0,13	0,13	DIN EN 16171 : 2017-01
Chrom (Cr)	mg/kg	22	1	DIN EN 16171 : 2017-01
Kupfer (Cu)	mg/kg	13	1	DIN EN 16171 : 2017-01
Nickel (Ni)	mg/kg	22	1	DIN EN 16171 : 2017-01
Quecksilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/kg	0,1	0,1	DIN EN 16171 : 2017-01
Zink (Zn)	mg/kg	34	6	DIN EN 16171 : 2017-01
Naphthalin	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Anthracen Fluoranthen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	0,069	0,05	DIN ISO 18287 : 2006-05
Pyren	mg/kg	0,056	0,05	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Dibenzo(ah)anthracen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Benzo(ghi)perylen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
Indeno(1,2,3-cd)pyren	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
PAK EPA Summe gem. ErsatzbaustoffV	mg/kg	<1,0 #5)	1	Berechnung aus Messwerten der Einzelparameter

Best.-Gr.

DAKKS
Deutsche
Aktreditierungsstelle
D-PL-14289-01-00

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.05.2025 Kundennr. 27067026

PRÜFBERICHT

3689808 Musberg, BV Filderstraße 119, Bodenproben Auftrag 143867 Bodenmaterial/Baggergut Analysennr.

Kunden-Probenbezeichnung MP 7

	Einheit	Ergebnis	BestGr.	Methode
PAK EPA Summe gem. BBodSchV 2021	mg/kg	<1,0 ×)	1	Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (52)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
FCB (101)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (101) PCB (118) PCB (138) PCB (153)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (138)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (153)	mg/kg	<0,0050 m)	0,005	DIN EN 17322 : 2021-03
PCB (180)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB 7 Summe gem. ErsatzbaustoffV	mg/kg	<0,010 #5)	0,01	Berechnung aus Messwerten der Einzelparameter
ErsatzbaustoffV PCB 7 Summe gem. BBodSchV 2021	mg/kg	<0,010 ×)	0,01	Berechnung aus Messwerten der Einzelparameter
Eluat				
Eluatanalyse in der Fraktion <32 mm				DIN 19529 : 2015-12
Fraktion < 32 mm Fraktion > 32 mm	%	° 100	0,1	DIN 19747 : 2009-07
	%	° <0,1	0,1	Berechnung aus dem Messwert
Eluat (DIN 19529) Temperatur Eluat pH-Wert		۰		DIN 19529 : 2015-12
Temperatur Eluat	°C	22,0	0	DIN 38404-4 : 1976-12
pH-Wert		8,4	0	DIN EN ISO 10523 : 2012-04
elektrische Leitfähigkeit	μS/cm	119	10	DIN EN 27888 : 1993-11
0 15 1 (0 0 1)	mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-07
Sulfat (SO4) Trübung (NTU) x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze zur Berechnung zugrunde ge			0,1	DIN EN ISO 7027-1 : 2016-11

Eluat

Liuut					
Eluatanalyse in der Fraktion <32					DIN 19529 : 2015-12
mm					
Fraktion < 32 mm	%	0	100	0,1	DIN 19747 : 2009-07
Fraktion > 32 mm	%	۰	<0,1	0,1	Berechnung aus dem Messwert
Eluat (DIN 19529)		•			DIN 19529 : 2015-12
Temperatur Eluat	°C		22,0	0	DIN 38404-4 : 1976-12
pH-Wert			8,4	0	DIN EN ISO 10523 : 2012-04
elektrische Leitfähigkeit	μS/cm		119	10	DIN EN 27888 : 1993-11
Sulfat (SO4)	mg/l		<2,0	2	DIN EN ISO 10304-1 : 2009-07
Trübung (NTU)	NTU		31	0,1	DIN EN ISO 7027-1 : 2016-11

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt. #5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.
m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixeffekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze

nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Parameter wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Die Berechnung der Messunsicherheiten in der folgenden Tabelle basiert auf dem GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP und OIML, 2008) und dem Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Es handelt sich also um einen sehr zuverlässigen Wert mit einem Vertrauensniveau von 95% (Konfidenzintervall). Abweichungen hiervon sind als Eintrag in der Spalte "Abweichende Bestimmungsmethode" gekennzeichnet.

Parameter

i i i i i i i i i i i i i i i i i i i	Abweichende Destimmungsmetriode	i alametei
20%		Arsen (As),Thallium (TI),Temperatur Eluat
28%		Blei (Pb)
25%		Chrom (Cr),Zink (Zn)
10%		elektrische Leitfähigkeit
30%		Fluoranthen,Trübung (NTU),Nickel (Ni)
25%	Estimation	Kohlenstoff, org., freisetzbar 400°C (TOC400)
27%		Kupfer (Cu)
5%	Estimation	Masse Laborprobe
5,83%		pH-Wert
45%		Pyren

Abweichende Bestimmungsmethode

AG Landshut Geschäftsführer Dr. Carlo C. Peich Dr. Paul Wimmer Dr. Torsten Zurmü HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Die in diesem Dokument berichteten Verfahren

ISO/IEC

DIN EN

sind

Messunsicherheit

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 06.05.2025 Kundennr. 27067026

PRÜFBERICHT

Auftrag 3689808 Musberg, BV Filderstraße 119, Bodenproben

Analysennr. 143867 Bodenmaterial/Baggergut

Kunden-Probenbezeichnung MP 7

6% Trockensubstanz

Bei der Messung nach DIN EN 15934 : 2012-11 wurde Verfahren A verwendet.

Bei der Messung nach DIN 19539: 2016-12 wurde das Verfahren nach Kapitel 8.5 verwendet.

Für die Messung nach DIN EN 17322 : 2021-03 wurde mittels Schütteln extrahiert und über mit Schwefelsäure aktiviertem Silicagel aufgereinigt. Die Detektion erfolgte mittels MS.

Für die Eluaterstellung wurden je Ansatz 350 g Trockenmasse +/- 5g mit 700 ml deionisiertem Wasser versetzt und über einen Zeitraum von 24h bei 5 Umdrehungen pro Minute im Überkopfschüttler eluiert. Bei Bedarf werden mehrere Ansätze parallel eluiert. Die Fest-/Flüssigphasentrennung erfolgte für hydrophile Stoffe gemäß Zentrifugation/Membranfiltration, für hydrophobe Stoffe gemäß Zentrifugation/Glasfaserfiltration.

Für die Messung nach DIN EN 38404-4: 1976-12 wurde das erstellte Eluat/Perkolat nicht stabilisiert.

Für die Messung nach DIN EN ISO 10523 : 2012-04 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

auibewanii.

Für die Messung nach DIN EN 27888 : 1993-11 wurde das erstellte Eluat/Perkolat bis zur Messung im Dunkeln gekühlt aufbewahrt. Für die Messung nach DIN EN ISO 10304-1 : 2009-07 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Für die Messung nach DIN EN ISO 7027-1 : 2016-11 wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Beginn der Prüfungen: 28.04.2025 Ende der Prüfungen: 02.05.2025

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig.

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

nicht

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH Bruckberg, Dr.-Pauling-Str. 3, 84079 Bruckberg

Angewandte Geowissenschaften Steffen Potthoff & Gabriel Brütsch Herr Steffen Potthoff Nauklerstraße 37A 72074 Tübingen Kundennr.: 27067026

Datum: 05.05.2025

PRÜFBERICHT 3689810 Musberg, BV Filderstraße 119, Bodenluft

IO Cocoll uft

Auftrag 3689810 Gase/Luft

Auftraggeber 27067026 Angewandte Geowissenschaften Steffen

Potthoff & Gabriel Brütsch

ProbenahmedatumKeine AngabeProbeneingang28.04.2025ProbenehmerAuftraggeber

Sehr geehrte Damen und Herren,

anbei übersenden wir Ihnen die Ergebnisse der Untersuchungen, mit denen Sie unser Labor beauftragt haben.

Dieser Prüfbericht mit der Auftragsnummer 3689810 und der Prüfberichtsversion 1 enthält die Probenummer(n) 143877-143882.

Mit freundlichen Grüßen

AGROLAB Labor GmbH Bruckberg, Philipp Schaffler, Tel. 0876593996-600

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol *) gekennzeichnet.

AGROLAB GROUP
Your labs. Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

PRÜFBERICHT 3689810 Musberg, BV Filderstraße 119, Bodenluft

Datum: 05.05.2025

Proben Informationen

Probenummer	Probenbezeichnung	Probenahmedatum	Probenehmer
143877	BL 1	Keine Angabe	Auftraggeber
143878	BL 2	Keine Angabe	Auftraggeber
143879	BL 3	Keine Angabe	Auftraggeber

Vor-Ort-Untersuchungen

Doromotor	Einheit	143877	143878	143879	Substanz
Parameter	Emnen	BL 1	BL 2	BL 3	
Volumen ^{2),*)}	1	0,5	0,5	0,5	os

Leichtflüchtige Halogenkohlenwasserstoffe

Parameter	Einheit	143877 BL 1	143878 BL 2	143879 BL 3	Substanz
Vinylchlorid	mg/m³	<1,01)	<1,01)	<1,01)	OS
Dichlormethan	mg/m³	<0,401)	<0,401)	<0,401)	OS
1,1-Dichlorethan	mg/m³	<0,401)	<0,401)	<0,401)	OS
1,2-Dichlorethan	mg/m³	<0,401)	<0,401)	<0,401)	OS
cis-1,2-Dichlorethen	mg/m³	<0,601)	<0,601)	<0,601)	OS
trans-1,2-Dichlorethen	mg/m³	<1,01)	<1,01)	<1,01)	OS
Trichlormethan	mg/m³	<0,401)	<0,401)	<0,401)	OS
1,1,1-Trichlorethan	mg/m³	<0,401)	<0,401)	<0,401)	OS
Trichlorethen	mg/m³	<0,401)	<0,401)	<0,401)	OS
Tetrachlormethan	mg/m³	<0,401)	<0,401)	<0,401)	OS
Tetrachlorethen	mg/m³	<0,401)	<0,401)	<0,401)	OS
LHKW - Summe	mg/m³	n.b. ¹⁾	n.b. ¹⁾	n.b. ¹⁾	os

Proben Informationen

Probenummer	Probenbezeichnung	Probenahmedatum	Probenehmer
143880	BL 4	Keine Angabe	Auftraggeber
143881	BL 5	Keine Angabe	Auftraggeber
143882	BL 6	Keine Angabe	Auftraggeber

Vor-Ort-Untersuchungen

	Parameter	Einheit	143880	143881	143882	Substanz
		BL 4	BL 5	BL 6		
	Volumen ^{2),*)}	1	0,5	0,5	0,5	OS

Leichtflüchtige Halogenkohlenwasserstoffe

Parameter	Einheit	143880	143881	143882	Substanz	
		BL 4	BL 5	BL 6		
Vinylchlorid	mg/m³	<1,01)	<1,01)	<1,0 ¹⁾	OS	
Dichlormethan	mg/m³	<0,401)	<0,401)	<0,401)	OS	
1,1-Dichlorethan	mg/m³	<0,401)	<0,401)	<0,401)	OS	
1,2-Dichlorethan	mg/m³	<0,401)	<0,401)	<0,401)	OS	
cis-1,2-Dichlorethen	mg/m³	<0,601)	<0,601)	<0,601)	OS	
trans-1,2-Dichlorethen	mg/m³	<1,01)	<1,01)	<1,01)	OS	
Trichlormethan	mg/m³	<0,401)	<0,401)	<0,401)	OS	
1,1,1-Trichlorethan	mg/m³	<0,401)	<0,401)	<0,401)	OS	
Trichlorethen	mg/m³	<0,401)	<0,401)	<0,401)	OS	

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol *) gekennzeichnet.

AGROLAB GROUP
Your labs, Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

PRÜFBERICHT 3689810 Musberg, BV Filderstraße 119, Bodenluft

Datum: 05.05.2025

Proben Informationen

Probenummer	Probenbezeichnung	Probenahmedatum	Probenehmer
143880	BL 4	Keine Angabe	Auftraggeber
143881	BL 5	Keine Angabe	Auftraggeber
143882	BL 6	Keine Angabe	Auftraggeber

Parameter	Einheit	143880 BL 4	143881 BL 5	143882 BL 6	Substanz
Tetrachlormethan	mg/m³	<0,401)	<0,401)	<0,401)	OS
Tetrachlorethen	mg/m³	<0,401)	<0,401)	<0,401)	os
LHKW - Summe	mg/m³	n.b. ¹⁾	n.b. ¹⁾	n.b. ¹⁾	os

Die parameterspezifischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

¹⁾ Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze gicht quantifizierbar.

Die Ermittlung der Ergebnisse im vorliegenden Prüfbericht erfolgte unter Zugrundelegung der oben aufgeführten Luftvolumina.

Beginn der Prüfung: 28.04.2025 Ende der Prüfung: 03.05.2025

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig.

Im Fall einer Konformitätsbewertung wird als Entscheidungsregel der diskrete Ansatz angewendet. Das bedeutet, dass die Messunsicherheit bei der Aussage zur Konformität zu einer Spezifikation oder Norm nicht berücksichtigt wird.

AGROLAB Labor GmbH Bruckberg, Philipp Schaffler, Tel. 0876593996-600

Methodenliste

Berechnung aus Messwerten der Einzelparameter LHKW - Summe

Kundeninformation*) Volumen $^{2),*)}$

VDI 3865 Blatt 3: 1998-06 Vinylchlorid • Dichlormethan • 1,1-Dichlorethan • 1,2-Dichlorethan • cis-1,2-Dichlorethen • trans-1,2-Dichlorethen • tra

1,1,1-Trichlorethan • Trichlorethen • Tetrachlormethan • Tetrachlorethen

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol *) gekennzeichnet.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH Bruckberg, Dr.-Pauling-Str. 3, 84079 Bruckberg

Angewandte Geowissenschaften Steffen Potthoff & Gabriel Brütsch Herr Steffen Potthoff Nauklerstraße 37A 72074 Tübingen Kundennr.: 27067026

Datum: 24.06.2025

PRÜFBERICHT 3712840 Musberg, Filderstraße 119 Altlasten (DU)

Auftrag 3712840 Grundwasser

Auftraggeber 27067026 Angewandte Geowissenschaften Steffen

Potthoff & Gabriel Brütsch

Probenahmedatum17.06.2025Probeneingang20.06.2025

Probenehmer Auftraggeber (Böckle/Stäblein)

Sehr geehrte Damen und Herren,

anbei übersenden wir Ihnen die Ergebnisse der Untersuchungen, mit denen Sie unser Labor beauftragt haben.

Dieser Prüfbericht mit der Auftragsnummer 3712840 und der Prüfberichtsversion 1 enthält die Probenummer(n) 220197, 220199-220203.

Mit freundlichen Grüßen

AGROLAB Labor GmbH Bruckberg, Stefan Ostermeier, Tel. 0876593996-600

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

PRÜFBERICHT 3712840 Musberg, Filderstraße 119 Altlasten (DU)

Datum: 24.06.2025

Proben Informationen

Probenummer	Probenbezeichnung	Probenahmedatum	Probenehmer
220197	GWM B1/WP1	17.06.2025 00:00	Auftraggeber (Böckle/Stäblein)
220199	GWM B2/WP1	17.06.2025 00:00	Auftraggeber (Böckle/Stäblein)
220200	GWM B3/WP1	17.06.2025 00:00	Auftraggeber (Böckle/Stäblein)

Leichtflüchtige Komponenten

Leichtflüchtige Komponenten					
Parameter	Einheit	220197 GWM B1/WP1	220199 GWM B2/WP1	220200 GWM B3/WP1	Substanz
Vinylchlorid	μg/l	<0,52)	<0,52)	<0,52)	OS
1,1 - Dichlorethen	μg/l	<0,52)	<0,5 ²⁾	<0,5 ²⁾	OS
1,1-Dichlorethan	μg/l	<0,52)	<0,5 ²⁾	<0,5 ²⁾	OS
Dichlormethan	μg/l	<1,0 ²⁾	<1,0 ²⁾	<1,02)	OS
1,2-Dichlorethan	μg/l	<0,52)	<0,5 ²⁾	<0,5 ²⁾	OS
cis-1,2-Dichlorethen	μg/l	<0,52)	<0,5 ²⁾	<0,5 ²⁾	OS
trans-1,2-Dichlorethen	μg/l	<0,52)	<0,5 ²⁾	<0,5 ²⁾	OS
Trichlormethan	μg/l	<0,52)	<0,5 ²⁾	<0,5 ²⁾	OS
Tetrachlormethan	μg/l	<0,52)	<0,5 ²⁾	<0,5 ²⁾	OS
1,1,1-Trichlorethan	μg/l	<0,52)	<0,5 ²⁾	<0,5 ²⁾	OS
Trichlorethen	μg/l	<0,52)	<0,5 ²⁾	<0,5 ²⁾	OS
Tetrachlorethen	μg/l	0,5	<0,5 ²⁾	<0,5 ²⁾	OS
LHKW - Summe	μg/l	0,501)	n.b.²)	n.b.²)	os

Proben Informationen

Probenummer	Probenbezeichnung	Probenahmedatum	Probenehmer				
220201	GWM B4/WP1	17.06.2025 00:00	Auftraggeber (Böckle/Stäblein)				
220202	GWM B5/WP1	17.06.2025 00:00	Auftraggeber (Böckle/Stäblein)				
220203	GWM B6/WP1	17.06.2025 00:00	Auftraggeber (Böckle/Stäblein)				

Leichtflüchtige Komponenten

Parameter	Einheit	220201 GWM B4/WP1	220202 GWM B5/WP1	220203 GWM B6/WP1	Substanz
Vinylchlorid	μg/l	<0,52)	<0,52)	<0,52)	OS
1,1 - Dichlorethen	μg/l	<0,5 ²⁾	<0,52)	<0,52)	OS
1,1-Dichlorethan	μg/l	<0,5 ²⁾	<0,5 ²⁾	<0,5 ²⁾	OS
Dichlormethan	μg/l	<1,02)	<1,02)	<1,02)	OS
1,2-Dichlorethan	μg/l	<0,52)	<0,52)	<0,52)	OS
cis-1,2-Dichlorethen	μg/l	9,1	2,7	<0,5 ²⁾	OS
trans-1,2-Dichlorethen	μg/l	<0,52)	<0,52)	<0,52)	OS
Trichlormethan	μg/l	<0,52)	<0,52)	<0,52)	OS
Tetrachlormethan	μg/l	<0,52)	<0,52)	<0,52)	OS
1,1,1-Trichlorethan	μg/l	<0,52)	<0,52)	<0,52)	OS
Trichlorethen	μg/l	15	3,0	<0,52)	OS
Tetrachlorethen	μg/l	34	2,8	<0,5 ²⁾	OS
LHKW - Summe	μg/l	58,1 ¹⁾	8,5 ¹⁾	n.b. ²⁾	os

¹⁾ Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.

Beginn der Prüfung: 20.06.2025

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Seite 2 von 3

²⁾ Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

AGROLAB GROUP
Your labs, Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

PRÜFBERICHT 3712840 Musberg, Filderstraße 119 Altlasten (DU)

Datum: 24.06.2025

Ende der Prüfung: 24.06.2025

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig.

Im Fall einer Konformitätsbewertung wird als Entscheidungsregel der diskrete Ansatz angewendet. Das bedeutet, dass die Messunsicherheit bei der Aussage zur Konformität zu einer Spezifikation oder Norm nicht berücksichtigt wird.

AGROLAB Labor GmbH Bruckberg, Stefan Ostermeier, Tel. 0876593996-600

Methodenliste

Berechnung aus Messwerten der Einzelparameter LHKW - Summe

DIN EN ISO 10301 : 1997-08Vinylchlorid • 1,1 - Dichlorethen • 1,1-Dichlorethen • Dichlorethen • 1,2-Dichlorethen • cis-1,2-Dichlorethen • trans-1,2-Dichlorethen • Trichlormethan • Tetrachlormethan • 1,1,1-Trichlorethan • Tetrachlorethen • Tetrachlorethen

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Seite 3 von 3

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Angewandte Geowissenschaften Steffen Potthoff & Gabriel Brütsch
Herr Steffen Potthoff
Nauklerstraße 37A
72074 Tübingen

Datum 09.07.2025

Kundennr. 27067026

PRÜFBERICHT

Auftrag 3719280 25007 Leinfelden-Echterdingen, Musberg, Filderstraße 119

Analysennr. 238094 Wasser
Probeneingang 08.07.2025
Probenahme 03.07.2025 10:35
Probenehmer Auftraggeber
Kunden-Probenbezeichnung GWM B 4/ PV WP 1

Einheit Ergebnis Best.-Gr. Grenzwert Methode

Leichtflüchtige Komponenten

Vinylchlorid	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
1,1 - Dichlorethen	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
1,1-Dichlorethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Dichlormethan	μg/l	<1,0	1	DIN EN ISO 10301 : 1997-08
1,2-Dichlorethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
cis-1,2-Dichlorethen	μg/l	5,2	0,5	DIN EN ISO 10301 : 1997-08
trans-1,2-Dichlorethen	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Trichlormethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Tetrachlormethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
1,1,1-Trichlorethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Trichlorethen	μg/l	8,8	0,5	DIN EN ISO 10301 : 1997-08
Tetrachlorethen	μg/l	30	0,5	DIN EN ISO 10301 : 1997-08
LHKW - Summe	µg/l	44,0 ×)		Berechnung aus Messwerten der Einzelparameter

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Beginn der Prüfungen: 08.07.2025 Ende der Prüfungen: 09.07.2025

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Im Fall einer Konformitätsbewertung wird als Entscheidungsregel der diskrete Ansatz angewendet. Das bedeutet, dass die Messunsicherheit bei der Aussage zur Konformität zu einer Spezifikation oder Norm nicht berücksichtigt wird.

AGROLAB Labor GmbH, Stefan Ostermeier, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

DAKKS

Deutsche
Aktreditierungsstelle
D-PL-14289-Q1-00

Die in diesem Dokument berichteten Verfahren

ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem

DIN EN I

Seite 1 von 1

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Angewandte Geowissenschaften Steffen Potthoff & Gabriel Brütsch Herr Steffen Potthoff Nauklerstraße 37A 72074 Tübingen

> 09.07.2025 Datum

Kundennr. 27067026

PRÜFBERICHT

Auftrag 3719280 25007 Leinfelden-Echterdingen, Musberg, Filderstraße 119

Analysennr. 238095 Wasser Probeneingang 08.07.2025 Probenahme 03.07.2025 11:08 Probenehmer Auftraggeber Kunden-Probenbezeichnung GWM B 4/ PV WP 2

Einheit Ergebnis Best.-Gr. Grenzwert Methode

Leichtflüchtige Komponenten

Vinylchlorid	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
1,1 - Dichlorethen	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
1,1-Dichlorethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Dichlormethan	μg/l	<1,0	1	DIN EN ISO 10301 : 1997-08
1,2-Dichlorethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
cis-1,2-Dichlorethen	μg/l	3,8	0,5	DIN EN ISO 10301 : 1997-08
trans-1,2-Dichlorethen	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Trichlormethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Tetrachlormethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
1,1,1-Trichlorethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Trichlorethen	μg/l	6,9	0,5	DIN EN ISO 10301 : 1997-08
Tetrachlorethen	μg/l	35	0,5	DIN EN ISO 10301 : 1997-08
LHKW - Summe	µg/l	45,7 ×)		Berechnung aus Messwerten der Einzelparameter

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Beginn der Prüfungen: 08.07.2025 Ende der Prüfungen: 09.07.2025

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Im Fall einer Konformitätsbewertung wird als Entscheidungsregel der diskrete Ansatz angewendet. Das bedeutet, dass die Messunsicherheit bei der Aussage zur Konformität zu einer Spezifikation oder Norm nicht berücksichtigt wird.

AGROLAB Labor GmbH, Stefan Ostermeier, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Die in diesem Dokument berichteten Verfahren

ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem

DIN EN I

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Angewandte Geowissenschaften Steffen Potthoff & Gabriel Brütsch Herr Steffen Potthoff Nauklerstraße 37A 72074 Tübingen

Datum 09.07.2025

Kundennr. 27067026

PRÜFBERICHT

Auftrag 3719280 25007 Leinfelden-Echterdingen, Musberg, Filderstraße 119

Analysennr. 238096 Wasser
Probeneingang 08.07.2025
Probenahme 03.07.2025 11:30
Probenehmer Auftraggeber
Kunden-Probenbezeichnung GWM B 4/ PV WP 3

Einheit Ergebnis Best.-Gr. Grenzwert Methode

Leichtflüchtige Komponenten

Vinylchlorid	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
1,1 - Dichlorethen	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
1,1-Dichlorethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Dichlormethan	μg/l	<1,0	1	DIN EN ISO 10301 : 1997-08
1,2-Dichlorethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
cis-1,2-Dichlorethen	μg/l	4,0	0,5	DIN EN ISO 10301 : 1997-08
trans-1,2-Dichlorethen	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Trichlormethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Tetrachlormethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
1,1,1-Trichlorethan	μg/l	<0,5	0,5	DIN EN ISO 10301 : 1997-08
Trichlorethen	μg/l	7,3	0,5	DIN EN ISO 10301 : 1997-08
Tetrachlorethen	μg/l	36	0,5	DIN EN ISO 10301 : 1997-08
LHKW - Summe	µg/l	47,3 ×)		Berechnung aus Messwerten der Einzelparameter

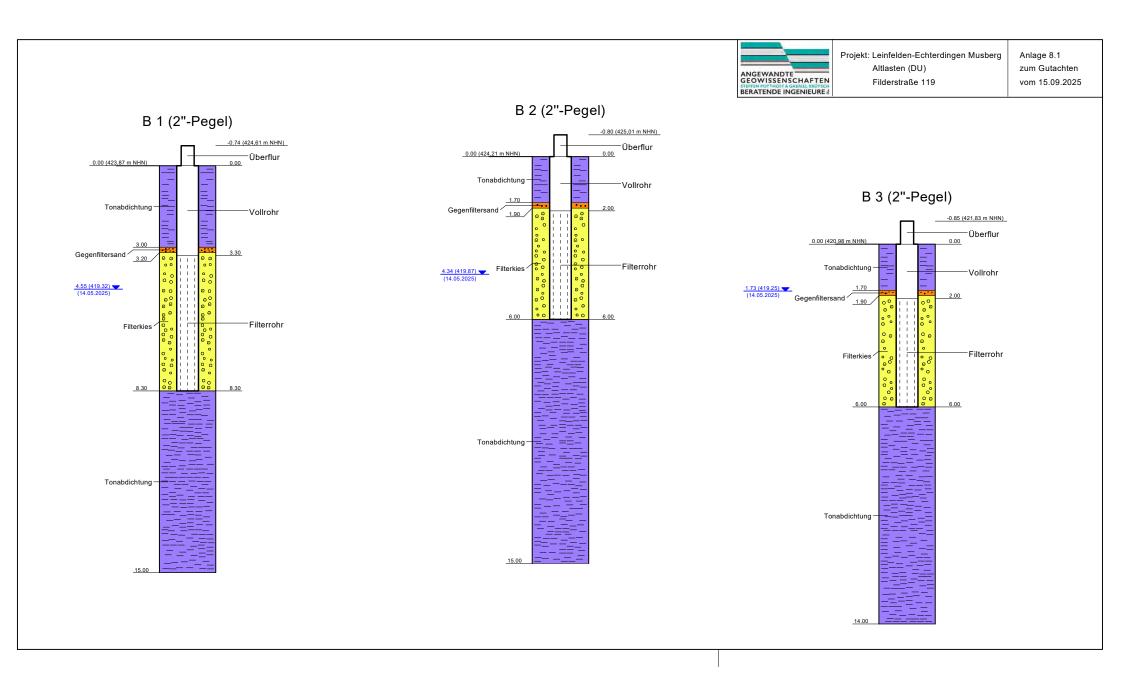
x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Beginn der Prüfungen: 08.07.2025 Ende der Prüfungen: 09.07.2025

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Im Fall einer Konformitätsbewertung wird als Entscheidungsregel der diskrete Ansatz angewendet. Das bedeutet, dass die Messunsicherheit bei der Aussage zur Konformität zu einer Spezifikation oder Norm nicht berücksichtigt wird.

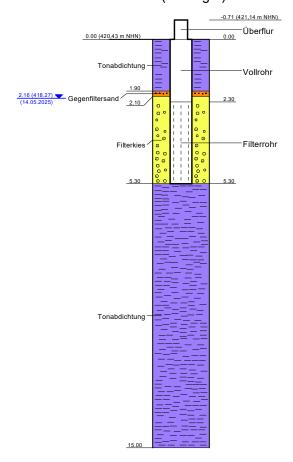
AGROLAB Labor GmbH, Stefan Ostermeier, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

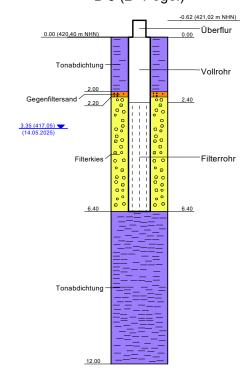

DAKKS

Deutsche
Aktreditierungsstelle
D-PL-14289-Q1-00

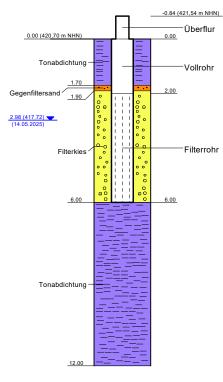
Die in diesem Dokument berichteten Verfahren

ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem


DIN EN I



Projekt: Leinfelden-Echterdingen Musberg Altlasten (DU) Filderstraße 119 Anlage 8.2 zum Gutachten vom 15.09.2025

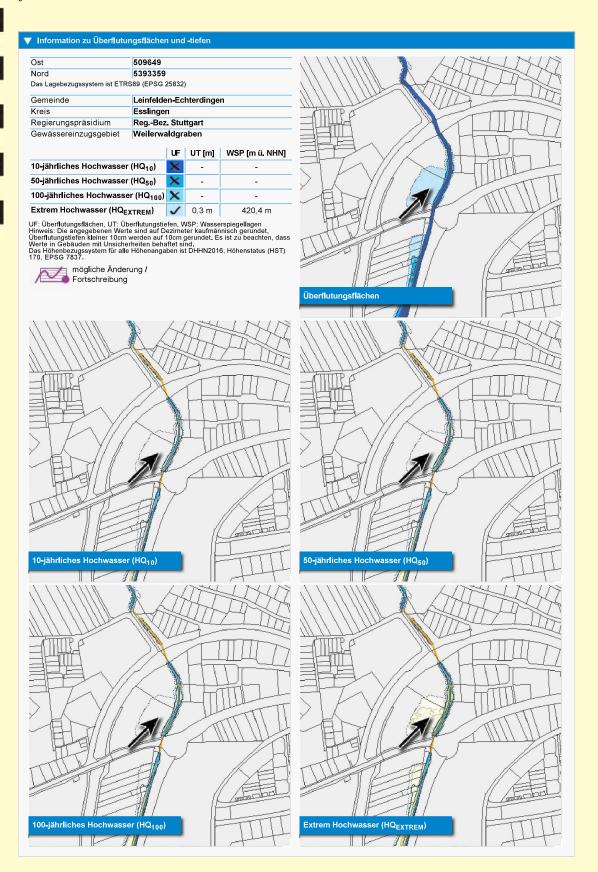

B 4 (2"-Pegel)

B 5 (2"-Pegel)

B 6 (3"-Pegel)

Anlage 9 zum Gutachten vom 15.09.2025

Datenblatt


der Hochwasserrisikoabfrage

Hochwasserrisikomanagement-Abfrage

Im Folgenden erhalten Sie das Ergebnis zu Ihrer Abfrage an der von Ihnen gewählten Koordinate.

Weitere ausführliche Informationen zum Thema Hochwasserrisiko-Management in Baden-Württemberg sind unter www.hochwasserbw.de zu finden,

gedruckt am 08.07.2025

Geländeinformation

Geländeinformation

der Hochwassergefahrenkarte 420,1 m ü. NHN

- Digitales Geländemodell der Hochwassergefahrenkarte (HWGK-DGM). Es wurden alle hydraulisch relevanten Strukturen (z. B. terrestrisch vermessene Querprofile, Dämme und Durchlässe) in
- das DGM des Landes Baden-Württemberg eingearbeitet.

 Die angegebenen Werte sind auf Dezimeter kaufmännisch gerundet. Es ist zu beachten, dass Werte innerhalb von Gebäuden mit Unsicherheiten behaftet sind.
- Das Höhenbezugssystem für alle Höhenangaben ist DHHN2016, Höhenstatuszahl (HST) 170, EPSG 7837
- Das Lagebezugssystem ist ETRS89 (EPSG Code 25832)

▼ Dokumente

Zu der markierten Koordinate konnten folgende Dokumente gefunden werden:

Endfassung

Überflutungsflächen-Karte M10.000

HWGK_UF_M100_104076.pdf

Überflutungstiefen-Karte HQ100 M10.000

HWGK_UT100_M100_104076.pdf

Hochwasserrisikokarte (HWRK)

Hochwasserrisikobewertungskarte (HWRBK)

Hochwasserrisikosteckbrief (HWRSt)

HWRK_GMD_8116078_Leinfelden_Echterdingen.pdf

Maßnahmenbericht – Allgemeine Beschreibung der Maßnahmen und des Vorgehens

HWRM_Massnahmenbericht_Allgemeine_Beschreibung.pdf

Maßnahmenbericht – Anhang I: Maßnahmen auf Ebene des Landes Baden-Württemberg

HWRM_Massnahmenbericht_Anhang1.pdf

Maßnahmenbericht – Anhang II: Maßnahmen nicht kommunaler Akteure

• HWRM_Massnahmenbericht_Anhang2_GMD_8116078_Leinfelden_Echterdingen.pdf

Maßnahmenbericht – Anhang III: Maßnahmen der Kommunen

• HWRM_Massnahmenbericht_Anhang3_GMD_8116078_Leinfelden_Echterdingen.pdf

Blattschnittübersichten

- HWGK_413_1_499_1_Aich_Blattschnitt_KartenTyp_1a_T2.pdf
- HWGK_413_1_499_1_Aich_Blattschnitt_KartenTyp_1b.pdf

sonstige Dokumente

Weiterführende Informationen:

- Hochwassergefahrenkarten: Beschreibung der Vorgehensweise zur Erstellung von Hochwassergefahrenkarten in Baden-Württemberg HWRM-Maßnahmenkatalog HWRM Optionales Titelblatt für Anhang III HWRM Optionale Rückseite für Anhang III

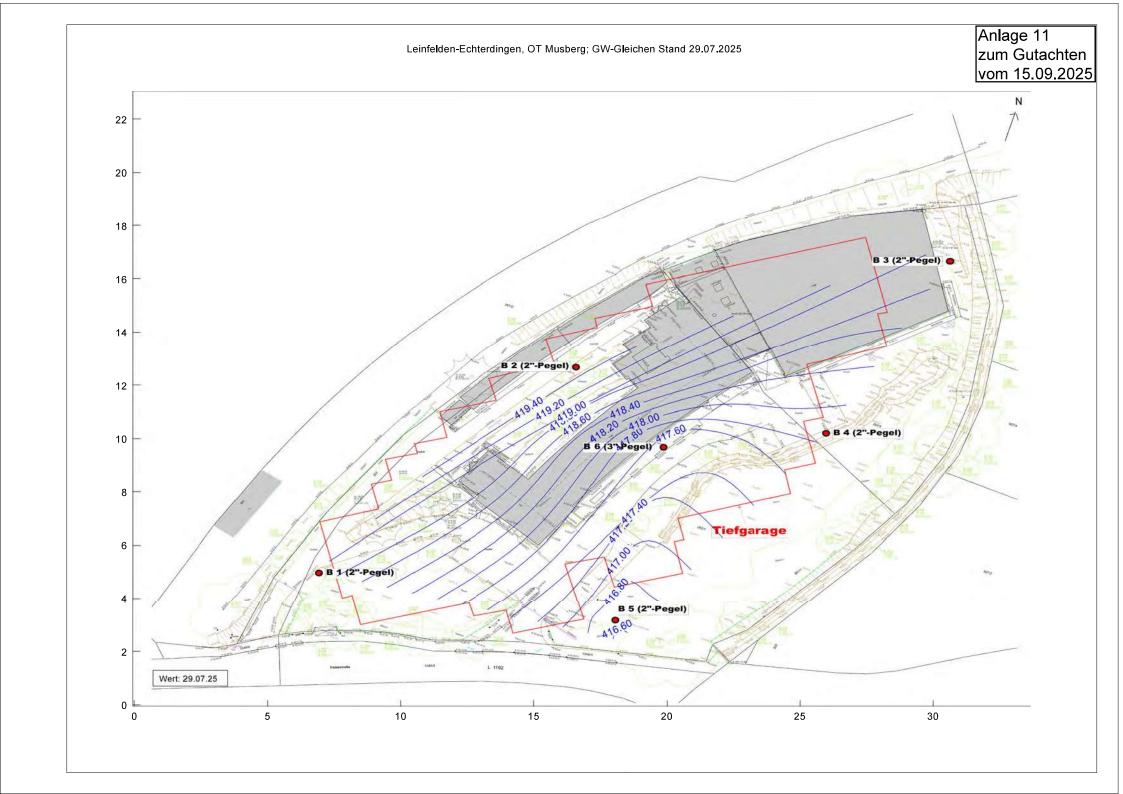
- Hovkm Optionale Ruckseite für Annan
 Lesehilfe HWGK
 Hochwasserrisikomanagementpläne
 Kommune Rückmeldebogen
 Kommune Checkliste

- Kommune FAQ

Quelle: LUBW. Die Nutzungsbedingungen des Umweltinformationssystem Baden-Württemberg entnehmen Sie bitte der Nutzungsvereinbarung.

Geobasisdaten: © LGL, www.lgl-bw.de,

Anlage 10 zum Gutachten vom 15.09.2025


Entnahmeprotokolle

Pumpversuch

ANGEWANDTE GEOWISSENSCHAFTEN		PROBENAHMEPROTOKOLL - Grundwasser				
geowissenschaften steren der propried and schied Beratende ingenieure i Datum:		03.07.2025	Uhrzeit	10:35	Proben-Nr.	PV WP 1
Objekt:		Filderstraße 119,	Musberg	Auftrgeb.		
Bezeichnung der Me	essstelle:	B 4]		
Lage:	RW:			HW:		
Kartengrundlage:	TK 25 Nr.			TK 10 Nr.		
Art der Messstelle:		Einfpegel Mehrf.pegel	х	Vertikalfilterb Schachtbr.:	r.:	
Messpunkt:		[m ü. NN]		Rohr-/Schach	ntdurchmesser	2"
Filterlage: [m u. MPkt]		von bis		GW-Spiegel	(vor Pr.n.) (nach Pr.n.)	
- Teufe der Messstell	e:	[m]		j	, , ,	
Beprobter Bereich:		Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
			5 m			
Art der Probenahme (Bitte ankreuzen)) :	Tauchpumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
Abpumpen:	Förderstrom [l/min]	0,01	Dauer [min]	63	Volumen [m³]	0,0
	GW-Temperatur (°C)	Luft-Temp (°C)	pH-Wert	el. Leitfäh. (μS/cm)	Sauerstoff (mg/l)	Redoxpotentia (mV)
Sofortanalytik:	17,3	22	6,78	877	7,9	8
Wahrnehmungen an der Probe:	Färbung:	farblos	weiß	gräulich I	gelb I	braun x
(Bitte ankreuzen)	Trübung:	keine	schwach	mittel	stark x	<u>' ^ </u>
	Geruch:	ohne x	aromatisch	faulig	jauchig	chemisch
					n. Chlor	n. Min.Öl
	Ausgasung:	ja	nein X	Bodensatz:	ja X	nein
Probengefäß: (Bitte ankreuzen)	Glasflasche	hell X	dunkel] Kunststo	offflasche:	
Konservierung:		IZSI-II	Male about		Datama	I llower of
Probentransport/-laç	gerung:	Kühlbox X	Kühlschrank	Übergabe Labor:	Datum	Uhrzeit
Bemerkungen:						
Wasseruhrstand	Start		Ziel		Ende	

ANGEWANDTE GEOWISSENSCHAFTEN		PROBENAHMEPROTOKOLL - Grundwasser				
GEOWISSENSCHAFTEN STEPPEN POTTOOPE GARNIEL AND TSCH BERATENDE INGENIEURE (I Datum:		03.07.2025	Uhrzeit	11:08	Proben-Nr.	PV WP 2
Objekt:		Filderstraße 119,	Musberg	Auftrgeb.		
Bezeichnung der Me	essstelle:	В 4]		
Lage:	RW:			HW:		
Kartengrundlage:	TK 25 Nr.			TK 10 Nr.		
Art der Messstelle:		Einfpegel Mehrf.pegel	Х	Vertikalfilterb Schachtbr.:	r.:	
Messpunkt:		[m ü. NN]		Rohr-/Schach	ntdurchmesser	2"
Filterlage: [m u. MPkt]		von		GW-Spiegel	(vor Pr.n.) (nach Pr.n.)	
- Teufe der Messstell	e:	[m]		j	,	
Beprobter Bereich:		Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
			5 m			
Art der Probenahme (Bitte ankreuzen)	9:	Tauchpumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
Abpumpen:	Förderstrom [l/min]	0,01	Dauer [min]	63	Volumen [m³]	0,0
	GW-Temperatur (°C)	Luft-Temp (°C)	pH-Wert	el. Leitfäh. (μS/cm)	Sauerstoff (mg/l)	Redoxpotentia
Sofortanalytik:	15,3	22	6,78	890	8,3	15
Wahrnehmungen an der Probe:	Färbung:	farblos	weiß	gräulich I	gelb I	braun x
(Bitte ankreuzen)	Trübung:	keine	schwach	mittel x	stark	<u>'^-</u>]
	Geruch:	ohne x	aromatisch	faulig	jauchig	chemisch
	Cordon			<u> </u>	n. Chlor	n. Min.Öl
	Ausgasung:	ja	nein X	Bodensatz:	ja X	nein
Probengefäß: (Bitte ankreuzen)	Glasflasche	hell X	dunkel	Kunststo	offflasche:	
Konservierung:						
Probentransport/-laç	gerung:	Kühlbox X	Kühlschrank	Übergabe Labor:	Datum	Uhrzeit
Bemerkungen:						
Wasseruhrstand	Start		Ziel		Ende	

ANGEWANDTE GEOWISSENSCHAFTEN		PROBENAHMEPROTOKOLL - Grundwasser				
GEOWISSENSCHAFTEN STEPPEN POTTOPH GRANNEL ANDTSCH BERATENDE INGENIEURE I Datum:		03.07.2025	Uhrzeit	11:30	Proben-Nr.	PV WP 3
Objekt:		Filderstraße 119,	Musberg	Auftrgeb.		
Bezeichnung der M	essstelle:	B 4]		
Lage:	RW:			HW:		
Kartengrundlage:	TK 25 Nr.			TK 10 Nr.		
Art der Messstelle:		Einfpegel Mehrf.pegel	Х	Vertikalfilterb Schachtbr.:	r.:	
Messpunkt:		[m ü. NN]		Rohr-/Schach	ntdurchmesser	2"
Filterlage: [m u. MPkt]		von		GW-Spiegel	(vor Pr.n.) (nach Pr.n.)	
Teufe der Messstell	e:	[m]		j	, , ,	
Beprobter Bereich:		Mischwasser	Entnahmetiefe [m]	ob. Bereich	mittl. Bereich	unt. Bereich
			5,4 m			
Art der Probenahme (Bitte ankreuzen)	e:	Tauchpumpe	Kreiselpumpe	aus Zapfhahn	Saugen	Schöpfen
Abpumpen:	Förderstrom [l/min]	0,01	Dauer [min]	63	Volumen [m³]	0,0
	GW-Temperatur (°C)	Luft-Temp (°C)	pH-Wert	el. Leitfäh. (μS/cm)	Sauerstoff (mg/l)	Redoxpotentia
Sofortanalytik:	16,6	22	6,71	885	7,1	12
Wahrnehmungen an der Probe:	Färbung:	farblos	weiß	gräulich I	gelb I	braun
(Bitte ankreuzen)	Trübung:	keine	schwach x	mittel	stark	<u> </u>
	Geruch:	ohne x	aromatisch	faulig	jauchig I	chemisch
	Cordoni			l .	n. Chlor	n. Min.Öl
	Ausgasung:	ja	nein X	Bodensatz:	ja X	nein
Probengefäß: (Bitte ankreuzen)	Glasflasche	hell X	dunkel] Kunststo	offflasche:	
Konservierung:						
Probentransport/-la	gerung:	Kühlbox X	Kühlschrank	Übergabe Labor:	Datum	Uhrzeit
Bemerkungen:						
Wasseruhrstand	Start		Ziel		Ende	

Anlage 12 zum Gutachten vom 15.09.2025

Stammdatenblätter

der Verdachtsflächen Nr. 5139 und 1145

AS Zerspanungstechnik Filderstr. 119 Flächen-Nr. 5139 Flächentyp: Industrie-/Gewerbestandort Gemeinde Leinfelden-Echterdingen, Stadt Rechtswert 3509703 Hochwert Teilgemeinde Musberg 5395087 Filderstr. 119 Fläche (m²) 9254 Strasse / Gewann Flurstücke (Flur-Flurstücksnummer/Unternummer) Gemarkung Musberg 0-262/3 0-262/1 Branche/Ursache VON BIS Herstellung von Eisen-, Blech-, und Metallwaren 1941 vermutlich ab 1941 Holzbearbeitung Herstellung von Apothekeneinrichtungen Fe-Metallverarbeitung, Maschinenbau

AS Zerspanungstechnik Filderstr. 119

Flächen-Nr. 5139

Flächentyp: Industrie-/Gewerbestandort

Standortbeschreibung

Fortschreibung Erfassung altlastverdächtiger Flächen 2007:

Gewerbeamt

Beim Gewerbeamt ist die Firma haru präzision GmbH seit 07.11.2001 gemeldet.

Laut CKW Anwenderliste des ehemaligen WBA's Kirchheim von 1994 wurden Tauchbäder mit 1.1.1 TCA (Trichlorethan) eingesetzt.

Gewerbeaufsicht:

1986: Überprüfung von Industrie- und Gewerbebetriebe vom 12.11.1986, bei der Firma haru präzision. Die Firma stellt Präzisionsdrehteile z.B. für die Autoindustrie her.

1987: Schreiben der Firma haru (10.03.1987) an das Gewerbeaufsichtsamt. Aus dem Schreiben geht hervor, dass die Firma auf den Einsatz von HKW-haltigen Kaltreinigern verzichtet. Die Restentsorgung erfolgt über Fachfirmen. Zur Entfettung werden Neutralreiniger eingesetzt.

Bauakten

1940: Schreiben der Firma A. Knippenberg, Patentmatratzen- und Stahlwarenfabrik, sie plant die Matratzenherstellung nach Musberg, Neubau eines Fabrikgebäudes, zu verlagern.

1947: Schreiben an das LRA vom 15.12.1947 über die Notwendigkeit der Baumaßnahme.

1948: Grundrissplan und Ansichtspläne des Fabrikgebäudes.

1961: Grundrissplan, im Plan sind verschiedene Standorte von Holzbearbeitungsmaschinen eingezeichnet. Westlich vor der Werkstatt ist ein neue Absauganlage (Siloturm) eingezeichnet. Als Bauherr ist die Firma Karl Mayer Apothekenbau vermerkt.

1962: Schreiben an das LRA wegen des geplanten Einbaus einer Spritzlackieranlage bei der Firma Karl Mayer Apothekenbau.

Baugenehmigung zum Einbau eines Spritzlackierraums im Dachgeschoß (04.06.1962). Im Lageplan OG ist der Spritzraum mit Spritzwand dargestellt.

1970: Lageplan

1975: Lageplan

1982: Anlage zur Baubeschreibung der Firma Haru präzision. Unter Art der gewerblichen Tätigkeit wird die Entwicklung und Vertrieb von Metallteilen, teilweise Eigenfertigung von Mustern.

Lage- und Grundrissplan, der Fertigungsbereich ist laut Plan im nördlichen Bereich des Gebäudes vermerkt.

2001: Baugrundgutachten

Landratsamt:

1982: Schreiben an die Stadt Leinfelden-Echterdingen aus dem Schreiben geht hervor, dass die Firma Haru das ehemalige Fabrikgebäude der Firma Apothekenbau Maier mieten und umbauen möchte. Im EG des Gebäudes soll eine kleine Fertigung für Drehteile (2-3 CNC Drehmaschinen) eingerichtet werden. Der größte Teil soll als Lager-, Büro- und Sozialräume genutzt werden. 1987: Schreiben des WWA Kirchheim, aus dem Schreiben geht hervor, dass die Firma einen 1.1.1 Trichloräthan Kaltreiniger einsetzt.

Formblatt zur Überprüfung von Industrie- und Gewerbebetriebe vom 12.11.1986. Auf Seite 2 wird die verbrauchte Menge an Trichloräthan mit 1377 kg/a angegeben. An weiteren Stoffen sind Hydrauliköl, Kühlschmieröl und Altöl aufgeführt. Es sind keine Schutzmaßnahmen vorhanden. Die Spänelagerung erfolgt in einem Container mit gelochtem Boden in einer betonierten Grube, deren Seitenwände unzulässige Fugen haben. Die Mulde ist mit Wellblech abgedeckt.

Personenbefragung:

Eine Mitarbeiterin der Firma haru wusste dass früher die Firma Mayer am Standort war, ihnen gehört das Grundstück. Was die Firma produzierte wusste sie nicht. Die Firma haru ist seit ca. 25 Jahren am Standort tätig.

Ortsbesichtigung

AS Zerspanungstechnik Filderstr. 119

Flächen-Nr. 5139

Flächentyp: Industrie-/Gewerbestandort

Begründung Altlastenverdacht

Die Recherchen zeigen, dass auf der Fläche mit LCKW haltigen Lösemitteln umgegangen wurde. Eine Gefährdung für die zu betrachtenden Wirkungspfade kann nicht ausgeschlossen werden. Auf BN1 wird die Fläche für den Wirkungspfad Boden - Grundwasser und Boden - Mensch mit "OU" bewertet.

Geologie

Nach der geologischen Karte, Blatt 7320 Böblingen befindet sich die Verdachtsfläche im Bereich des mächtigen Stubensandsteins und im Osten und Süden in einer Auffüllung (vergl. Nr. 01145). Im Liegenden folgen die Oberen Bunten Mergel.

Als grundwasserführend sind die Sandsteinbänke des Stubensandsteins anzusehen. Es ist mit einem relativ hohen Grundwasserstand zu rechnen (vergl. Baurgrundgutachten).

Nutzungen auf der Fläche

Feststellungsdatum

bauliche Nutzung

12.02.2008

Planungsrechtlich zulässige Nutzung

zulässige Nutzung

Datum FNP

Betroffene Schutzgebiete

Bewertung

handlungsbestimmend

Datum

21.10.2008

Beweisniveau

1

Wirkungspfad

Boden - Grundwasser

Handlungsbedarf

Orientierende Untersuchung notwendig

ΟU

Erläuterungen

Bewertungsgegenstand

Bewertungsziffern

Art der Einwirkung

LCKW, FCKW, sonstige organische Chlorverbindungen,

Schwermetallsalze (auch As-, Se-Verbindungen), anorganische Stoffe

(Alkali-, Erdalkalimetallsalze, Cyanide,, BTXE / leichtfl. arom.

Kohlenwasserstoffe

weitere Bewertungen

Datum

Beweis- Handlungsbedarf

Wirkungspfad

RPS

21.10.2008

niveau 1

Orientierende Untersuchung

Boden - Mensch

Vorschlag für weitere Maßnahmen

Untergrunduntersuchungen sollten im Bereich der Werkhalle, der Kanalisation, sowie des beschriebenen Spänelagerplatzes durchgeführt werden. Die Proben (Feststoff, Bodenluft und Wasser) sollten auf die dabei vermuteten Verunreinigungen untersucht werden.

AA Gelaendeauffuellung Filderstrasse

Flächen-Nr. 1145

Flächentyp: Altablagerung

Gemeinde	Leinfelden-Echterdingen, Stadt	Rechtswert	3509871
Teilgemeinde	Musberg	Hochwert	5395126
Strasse / Gewann	Filderstrasse 0	Fläche (m²)	15103

Flurstücke	(Flur-Flurstücksnummer/Unternummer)				
Gemarkung	Leinfelden				
0-917/4	0-925	0-938/4	0-927/2	0-927/4	
0-928	0-930	0-931/1	0-931/2	0-932	
0-932/1	0-933/1	0-933/2	0-933/3	0-933/4	
0-933/5	0-933/6	0-935	0-936	0-937	
0-938/1	0-938/2				
Gemarkung	Musberg				
0-262/1	0-262/3				

Branche/Ursache	VON	BIS
Erdaushubablagerung	1965	1968

Standortbeschreibung

Nach Angaben aus der Ersterhebung wurde die Fläche im Zeitraum von 1965 bis 1968 mit Bauschutt Erdaushub und Straßenaufbruch verfüllt. Im Bemerkungsfeld ist aufgeführt, Verfüllung ist in Verbindung mit der Auffüllung Flurstück Nr. 262/1 nördlich der Filderstraße zu sehen.

Fortschreibung Erfassung altlastverdächtiger Flächen 2007:

Personenbefragung:

Von einer Zeitzeugin wurde die Auffüllung bestätigt. Sie gab an, dass früher das Gelände, von der Musberger Str. Richtung Norden ca. 2m abfiel. Der gesamte Bereich war sehr sumpfig. Richtung Musberg wurde die gesamte Fläche aufgefüllt. Mit was die Fläche verfüllt wurde konnte die Person nicht sagen, es war aber auch Müll bzw. Sperrmüll dabei.

Bauakten:

Im Baugrundgutachten zur geplanten Produktionshallenerweiterung auf der Fläche Flurstück Nr.262/1 werden künstliche Auffüllungen beschrieben. Im Kapitel 4.1 ist zu lesen, "In den Kleinbohrungen 2-5 (im eingeebneten Gelände) stehen unter dem humosen Oberboden bis ca. 1,1- 1,4m Tiefe aufgefüllter Boden an, der vermutlich zur Einebnung des Geländes aufgebracht wurde. Es handelt sich um ockergelben Lößlehm, rotbraunen Hang/Verwitterungslehm und grauen Auelehm mit meist kiesigen Beimengungen von Sandstein, Ziegel, Asphalt. Der Boden war organoleptisch unauffällig".

(Baugrundgutachten; Erweiterung der Produktionshalle, Filderstraße 119, Flst.-Nr. 262/1 in 70771 Leinfelden-Echterdingen, vom 04.05.2001, von Firma Voigtmann)

Ortsbesichtigung

Begründung Altlastenverdacht

Bei den Recherchen wurde die Verfüllung bestätigt. Mit kritischem Müll wird auf Grund der gemachten Aussagen nicht gerechnet. Eine Gefährdung für die zu betrachtenden Wirkungspfade wird nicht gesehen.

Auf BN 1wird die Fläche für den Wirkungspfad Boden - Grundwasser mit B Entsorgung eingestuft. Für den Wirkungspfad Boden - Mensch erfolgt die Einstufung auf BN 1 "A".

Nutzungen auf der Fläche	Feststellungsdatum
bauliche Nutzung	30.06.1996
bauliche Nutzung	11.12.2007

AA Gelaendeauffuellung Filderstrasse

Flächen-Nr. 1145

Flächentyp: Altablagerung

Planungsrechtlich zulässige Nutzung

zulässige Nutzung

Datum FNP

Betroffene Schutzgebiete

Bewertung

handlungsbestimmend

Datum

30.09.2008

Beweisniveau

1

Wirkungspfad

Boden - Grundwasser

Handlungsbedarf

Belassen - Entsorgungsrelevanz

В

Erläuterungen

Bewertungsgegenstand

Bewertungsziffern

Art der Einwirkung

sonstige organische Stoffe, PAK, MKW / aliphatische Kohlenwasserstoffe,

anorganische Stoffe (Alkali-, Erdalkalimetallsalze, Cyanide,

weitere Bewertungen

Datum Beweis- Handlungsbedarf Wirkungspfad RPS
niveau

30.09.2008 1 A Boden - Mensch
07.12.1995 0 A Vorklassifizierung